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Abstract

A powerful, easy-to-use analytic tool for nonlinear problems in general, namely the

homotopy analysis method, is further improved and systematically described through a

typical nonlinear problem, i.e. the algebraically decaying viscous boundary layer flow

due to a moving sheet. Two rules, the rule of solution expression and the rule of co-

efficient ergodicity, are proposed, which play important roles in the frame of the ho-

motopy analysis method and simplify its applications in science and engineering. An

explicit analytic solution is given for the first time, with recursive formulas for coeffi-

cients. This analytic solution agrees well with numerical results and can be regarded as a

definition of the solution of the considered nonlinear problem.
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1. Introduction

In most cases it is difficult to solve nonlinear problems, especially analyti-

cally. Perturbation techniques [1,2] are currently the main stream. Perturbation

techniques are based on the existence of small/large parameters, the so-called

perturbation quantity. Unfortunately, many nonlinear problems in science and

engineering do not contain such kind of perturbation quantities at all. Some

nonperturbative techniques, such as the artificial small parameter method [3],
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the d-expansion method [4] and the Adomian�s decomposition method [5], have

been developed. Different from perturbation techniques, these nonperturbative
methods are independent upon small parameters. However, both of the per-

turbation techniques and the nonperturbative methods themselves can not

provide us with a simple way to adjust or control the convergence region and

rate of given approximate series.

Liao [6] proposed a powerful analytic method for nonlinear problems,

namely the homotopy analysis method [7–13]. Different from all reported

perturbation and nonperturbative techniques mentioned above, the homotopy

analysis method itself provides us with a convenient way to control and adjust
the convergence region and rate of approximation series, when necessary.

Briefly speaking, the homotopy analysis method has the following advantages

• it is valid even if a given nonlinear problem does not contain any small/large

parameters at all;

• it itself can provide us with a convenient way to adjust and control the con-

vergence region and rate of approximation series when necessary;

• it can be employed to efficiently approximate a nonlinear problem by choos-

ing different sets of base functions.

To systematically describe the basic ideas of the homotopy analysis method

and to show its validity, let us consider a viscous boundary layer flow due to a

moving sheet occupying the negative x-axis and moving continuously in the

positive x-direction at a velocity
us ¼ u0
x0
jxj

� �j

; 0 < j < 1; ð1Þ
where ðx; yÞ denotes the coordinate in Cartesian system. The boundary layer

flow is governed by
ou
ox

þ ov
oy

¼ 0; u
ou
ox

þ v
ou
oy

¼ m
o2u
oy2

; ð2Þ
where u and v are the velocity components in the x- and y-directions, respec-
tively. The corresponding boundary conditions are
u ¼ us; v ¼ 0 at y ¼ 0; u ! 0 as y ! þ1: ð3Þ
Under the similar transformation
w ¼ F ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2musjxj

p
; n ¼ y

ffiffiffiffiffiffiffiffiffiffi
us

2mjxj

r
; ð4Þ
where w is the stream function defined by u ¼ ow=oy and v ¼ �ow=ox, the Eqs.
(2) and (3) become
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F 000ðnÞ þ ðj� 1ÞF ðnÞF 00ðnÞ � 2j½F 0ðnÞ�2 ¼ 0 ð5Þ
and
F ð0Þ ¼ 0; F 0ð0Þ ¼ 1; F 0ðþ1Þ ¼ 0; ð6Þ
where the prime denotes differentiation with respect to n. For details, please
refer to Kuiken [14].

Kuiken [14] gave such an asymptotic expression
f � ðn� n0Þa
XN
i¼0

c1�i
0 ciðn� n0Þ�ið1þaÞ

; ð7Þ
where
a ¼ 1� j
1þ j

ð8Þ
and the coefficients ci are given by recursive formulas and the coefficients c0; n0
are determined by an iterative numerical approach. Thus, rigorously speaking,
Kuiken�s solution is semi-analytic and semi-numerical one. Besides, the above

expression is valid only for n� n0 � 1, because it is singular at n ¼ n0. To the

best of our knowledge, no one has reported an explicit, purely analytic solution

of (5) and (6), valid in the whole region 06 n6 þ1.

In this paper the homotopy analysis method is further improved and sys-

tematically described in a usual procedure through a typical example men-

tioned above. Two rules are described, which play important roles in the frame

of the homotopy analysis method and simplify its applications in science and
engineering. An explicit analytic solution of above nonlinear problem is given

for the first time.
2. Homotopy analysis method

In this section the homotopy analysis method is further improved and

systematically described to give an explicit analytic solution of the nonlinear

problem mentioned above. A usual procedure of the homotopy analysis

method is proposed for the first time.

2.1. Analysis of asymptotic property

The application of the homotopy analysis method starts from the analysis of
asymptotic property of the considered problem, if possible. Due to the

boundary condition (6), F 0ðnÞ ! 0 as n ! þ1. So, it is important to quali-

tatively analyze the asymptotic property of F ðnÞ at infinity. Does F 0ðnÞ ! 0
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exponentially or algebraically? Kuiken [14] pointed out that when 0 < j < 1

Eqs. (5) and (6) have solutions with the algebraic property
F ðnÞ � na ð9Þ
for large n, where a defined by (8) is obtained by substituting the main term

F � na into (5) for large n. Thus, F 0ðnÞ � na�1 algebraically decays to zero as
n ! þ1.

The analysis of asymptotic property of a nonlinear problem often provides

us with a lot of valuable information, which often greatly increase convergence

rate of approximate series. However it had to be pointed out that sometimes it

is hard to analyze asymptotic properties of a given nonlinear problem at in-

finity.

2.2. Rule of solution expression

Due to the asymptotic property (9) and Eqs. (5) and (6), it is natural to

assume that F ðnÞ can be expressed by the set of base function
ð1f þ nÞa; 1; ð1þ nÞma�njma� n < 0;mP 1 and nP 1 are integersg
ð10Þ
so that F ðnÞ can be expressed by
F ðnÞ ¼ aþ ð1þ nÞa
Xþ1

m¼0

Xþ1

n¼1

bm;nð1þ nÞmða�nÞ
; ð11Þ
where a and bm;n are coefficients. This provides us with the rule of solution

expression.

2.3. Choosing initial guess and auxiliary linear operator

Due to the boundary conditions (6) and the rule of solution expression

described by (11), it is straightforward to choose
F0ðnÞ ¼
ð1þ nÞa � 1

a
ð12Þ
as the initial approximation of F ðnÞ. Furthermore, due to the boundary con-

ditions (6) and the foregoing rule of solution expression, it is natural to choose

the auxiliary linear operator
L½Uðn; qÞ� ¼ ð1þ nÞ3 o
3Uðn; qÞ
on3

þ 2ð1� aÞð1þ nÞ2 o
2Uðn; qÞ
on2

� að1� aÞð1þ nÞ oUðn; qÞ
on

ð13Þ
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with the property
L½C0 þ C1ð1þ nÞa þ C2ð1þ nÞaþ1� ¼ 0; ð14Þ
where a is defined by (8) and C0;C1;C2 are coefficients.
2.4. The zero-order deformation equation

Due to the governing Eq. (5) we define the nonlinear operator
N½Uðn; qÞ� ¼ o3Uðn; qÞ
on3

þ ðj� 1ÞUðn; qÞ o
2Uðn; qÞ
on2

� 2j
oUðn; qÞ

on

� �2
:

ð15Þ
Let �h denote a nonzero auxiliary parameter and
HðnÞ ¼ ð1þ nÞc; ð16Þ
an auxiliary function, where c is a real number to be determined later. Then, we

construct the zero-order deformation equation
ð1� qÞL½Uðn; qÞ � F0ðnÞ� ¼ �hqHðnÞN½Uðn; qÞ�; ð17Þ
subject to the boundary conditions
Uð0; qÞ ¼ 0;
oUðn; qÞ

on

����
n¼0

¼ 0;
oUðn; qÞ

on

����
n¼þ1

¼ 0; ð18Þ
where q 2 ½0; 1� is an embedding parameter. When q ¼ 0, it is straightforward

that
Uðn; 0Þ ¼ F0ðnÞ: ð19Þ
When q ¼ 1, the zero-order deformation equations (17) and (18) are equivalent

to the original Eqs. (5) and (6) so that
Uðn; 1Þ ¼ F ðnÞ: ð20Þ
So, as the embedding parameter q increases from 0 to 1, Uðn; qÞ varies (or

deforms) from the initial approximation F0ðnÞ to the solution F ðnÞ of the

original Eqs. (5) and (6).

Due to Taylor�s theorem and (19), we expand Uðn; qÞ in the power series
Uðn; qÞ � F0ðnÞ þ
Xþ1

m¼1

FmðnÞqm; ð21Þ
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where
FmðnÞ ¼
1

m!
omUðn; qÞ

oqm

����
q¼0

: ð22Þ
Assume that the above series is convergent when q ¼ 1, we have due to (20)

that
F ðnÞ ¼ F0ðnÞ þ
Xþ1

m¼1

FmðnÞ: ð23Þ
2.5. The high-order deformation equation

Differentiating the zero-order deformation equations (17) and (18) m times
with respect to q and then dividing them by m! and finally setting q ¼ 0, we

have the so-called mth-order deformation equation
L½FmðnÞ � vmFm�1ðnÞ� ¼ �hHðnÞRmðnÞ; ð24Þ
subject to the boundary conditions
Fmð0Þ ¼ F 0
mð0Þ ¼ F 0

mðþ1Þ ¼ 0; ð25Þ
where
RmðnÞ ¼
1

ðm� 1Þ!
om�1N½Uðn; qÞ�

oqm�1

����
q¼0

¼ F 000
m�1ðnÞ þ

Xm�1

n¼0

½ðj� 1ÞFnðnÞF 00
m�1�nðnÞ � 2jF 0

nðnÞF 0
m�1�nðnÞ� ð26Þ
and
vm ¼ 0; when m6 1;
1; when mP 2:

�
ð27Þ
2.6. Rule of coefficient ergodicity

The mth-order deformation equations (24) and (25) are linear and thus can

be easily solved, especially by means of symbolic computation software such as

Mathematica, Maple, MathLab and so on. The value of c in the auxiliary

function HðnÞ defined by (16) is determined by both of the foregoing rule of

solution expression and the so-called rule of coefficient ergodicity, i.e. all co-
efficients of the solution can be modified when the order of approximation tends to

infinity. Due to the rule of solution expression described by (11), c should be an

integer. It is found that when cP 2 the solution contains the terms ð1þ nÞaþ1
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so that the rule of solution expression is disobeyed. When c6 0 the coefficients

of some terms such as ð1þ nÞa�1
are always zero and thus can not be improved

even as the order of approximation tends to infinity. This however disobeys the

rule of coefficient ergodicity. Thus, c ¼ 1 and therefore the auxiliary function
HðnÞ ¼ 1þ n ð28Þ
is uniquely determined by both of the rule of solution expression and the rule

of coefficient ergodicity.

2.7. Recursive expression of solution

Using the auxiliary function (28) and solving first several mth-order defor-
mation equations (24) and (25) for m ¼ 1; 2; 3; . . ., we find that FmðnÞ can be

expressed in general by
FmðnÞ ¼ Am þ ð1þ nÞa
Xm
i¼0

X2m�i

j¼i

Bi;j
m ð1þ nÞia�j

; ð29Þ
where Am and Bi;j
m are coefficients. To ensure that the above expression holds for

all mP 1, we substitute it into the mth-order deformation equation (24) and

obtain the following recurrence formula
Bi;j
m ¼ vmvmþ1�iv2m�i�jB

i;j
m�1 þ

�hci;jm
ðia� jÞðia� j� 1Þ½ðiþ 1Þa� j� ð30Þ
for 06 i6m; i6 j6 2m� i when i2 þ j2 6¼ 0 and
ðia� jÞðia� j� 1Þ½ðiþ 1Þa� j� 6¼ 0;
where
ci;jm ¼ vmþ1�ivj�i½ðiþ 1Þa� j�½ðiþ 1Þa� jþ 1�½ðiþ 1Þa� jþ 2�Bi;j�2
m�1

þ ðj� 1Þðvmþ1�ivjþ1�iv2mþ1�i�jb
i;j
m þ viþ1D

i;j
m Þ � 2jviþ1d

i;j
m ð31Þ
with the definitions
di;jm ¼
Xm�1

n¼0

Xminfn;i�1g

r¼maxf0;iþn�mg

Xminf2n�r;rþj�ig

s¼maxfr;iþjþ2n�2m�rg
½ðr þ 1Þa� s�

� ½ði� rÞa� jþ sþ 1�Br;s
n Bi�r�1;j�s�1

m�1�n ; ð32Þ

Di;j
m ¼

Xm�1

n¼0

Xminfn;i�1g

r¼maxf0;iþn�mg

Xminf2n�r;rþj�ig

s¼maxfr;iþjþ2n�2m�rg

� ½ði� rÞa� jþ s�½ði� rÞa� jþ sþ 1�Br;s
n Bi�r�1;j�s�1

m�1�n ; ð33Þ
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bi;j
m ¼

Xminfm�1�i;Qð2m�i�j�1Þ=2g

n¼0

½ðiþ 1Þa� j�½ðiþ 1Þa� jþ 1�AnB
i;j�1
m�1�n ð34Þ
and
Qð2kÞ ¼ Qð2k þ 1Þ ¼ 2k ð35Þ
for integers kP 0. Besides,
Bi;j
m ¼ 0 when ðia� jÞðia� j� 1Þ½ðiþ 1Þa� j� ¼ 0: ð36Þ
Due to the boundary condition (25), we have
B0;0
m ¼ �

X2m
j¼1

1

�
� j
a

�
B0;j
m �

Xm
i¼1

X2m�i

j¼i

i
�

þ 1� j
a

�
Bi;j
m ; ð37Þ

Am ¼ �
Xm
i¼0

X2m�i

j¼i

Bi;j
m : ð38Þ
The first two coefficients
A0 ¼ � 1

a
; B0;0

0 ¼ 1

a
ð39Þ
are given by the initial guess (12). Thus, using these two coefficients and

foregoing recursive formulas (30)–(38), we can successively calculate FmðnÞ for
m ¼ 1; 2; 3; . . . At the Mth-order of approximation, we have
F ðnÞ �
XM
m¼0

Am

"
þ ð1þ nÞa

Xm
i¼0

X2m�i

j¼i

Bi;j
m ð1þ nÞia�j

#
: ð40Þ
Note that the coefficients of above expression are dependent upon the

auxiliary parameter �h. Assuming that �h is so properly chosen that the above

series converges, we have the explicit analytic solution
F ðnÞ ¼ lim
M!þ1

XM
m¼0

Am

"
þ ð1þ nÞa

Xm
i¼0

X2m�i

j¼i

Bi;j
m ð1þ nÞia�j

#
: ð41Þ
2.8. Convergence theorem

As proved by Liao [7] in general, if �h is properly chosen so that the series

(21) is convergent at q ¼ 1, one can get as accurate approximations as possible

by means of the series (23). Similarly, we have

Theorem 1 (Convergence theorem). The series (23) is an exact solution of Eqs.
(5) and (6) as long as it is convergent.
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Proof. Due to the definition (27) of vm and the mth-order deformation equation

(24), it holds
�hHðnÞ
XM
m¼1

RmðnÞ ¼
XM
m¼1

L½FmðnÞ � vmFm�1ðnÞ� ¼ L½FMðnÞ�:

the series (23) is convergent, it must hold
If
lim
M!þ1

FMðnÞ ¼ 0:

us, due to the definition (13) of L and above two expressions, we have
Th
�hHðnÞ
Xþ1

m¼1

RmðnÞ ¼ lim
M!þ1

L½FMðnÞ� ¼ L lim
M!þ1

FMðnÞ
� �

¼ 0;
which gives
Xþ1

m¼1

RmðnÞ ¼ 0
because both of the auxiliary parameter �h and the auxiliary function HðnÞ
defined by (28) are nonzero. Substituting the definition (26) of RmðnÞ into above

expression, we have
Xþ1

m¼1

RmðnÞ ¼
d3

dn3
Xþ1

m¼0

FmðnÞ
" #

þ ðj� 1Þ
Xþ1

m¼0

FmðnÞ
" #

d2

dn2
Xþ1

m¼0

FmðnÞ
" #

� 2j
d

dn

Xþ1

m¼0

FmðnÞ
" #

d

dn

Xþ1

m¼0

FmðnÞ
" #

¼ 0: ð42Þ
Besides, using the boundary conditions (25) and the definition (12) of the

initial guess F0ðnÞ, we have
Xþ1

m¼0

Fmð0Þ ¼ 0;
Xþ1

m¼0

F 0
mð0Þ ¼ 1;

Xþ1

m¼0

F 0
mðþ1Þ ¼ 0: ð43Þ
Thus, due to (42) and (43), the series
Xþ1

m¼0

FmðnÞ
must be an exact solution of equations (5) and (6). This ends the proof. �

2.9. Determining the region of �h for validity

Note that the solution (41) contains the auxiliary parameter �h, which we

have great freedom to choose. The validity of foregoing analytic approach is

based on such an assumption that the series (21) converges at q ¼ 1. It is the
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auxiliary parameter �h which ensures that this assumption can be satisfied, as

verified in our previous publications [7,9–13]. Generally, for any an analytic
solution given by the homotopy analysis method, one should provide the

corresponding region of �h, in which the given analytic solution is valid.

When j ¼ 1=3 there exists an exact solution
Fig. 1

the ho

ximatio
F ðnÞ ¼ �3
c2

9

� �1=6 Ai0ðzÞ
AiðzÞ ; z ¼ ðcn� 1Þ

3

9

c2

� �1=3

; ð44Þ
where AiðzÞ is Airy function and c ¼ �F 00ð0Þ ¼ 0:56144919346, as reported by

Kuiken [14]. Obviously, this exact analytic solution can be employed to verify

the validity of the proposed analytic approach. It is found that the series (41) is

convergent when �16 �h < 0 and j ¼ 1=3. When j ¼ 1=3 and �h ¼ �1, our

20th-order approximation agrees well with the exact solution (44), as shown in

Fig. 1. And the corresponding value of F 00ð0Þ converges to the exact one
F 00ð0Þ ¼ �0:56144919346, as shown in Table 1. This clearly indicates the

validity of our analytic approach. Furthermore, it is found that when

�16 �h < 0 the series (41) is valid in the whole region 0 < j < 1, as shown in

Fig. 2. Thus, the explicit analytic solution (41) when �h ¼ �1 can be regarded as

a kind of definition of the nonlinear equations (5) and (6). Note that, different

from Kuiken�s asymptotic expression (7), the solution (41) is a purely analytic

solution and is valid in the whole region 06 n6 þ1.
ξ

F
(ξ

)

0 250 500 750 1000
0

15

30

45

. Comparison of the exact result (44) of F ðnÞ with the analytic approximations (40) given by

motopy analysis method when j ¼ 1=3 and �h ¼ �1. Dashed line: 10th-order HAM appro-

n; solid line: 20th-order HAM approximation; circle: exact solution (44).



Table 1

The value of F 00ð0Þ when j ¼ 1=3 at the nth-order of approximation given by the homotopy

analysis method with �h ¼ �1

n F 00ð0Þ given by the homotopy analysis method

5 )0.56360
10 )0.56158
15 )0.56139
20 )0.56141
25 )0.56143
30 )0.56144
35 )0.56145
40 )0.56145

0 5 10 15 20
0

0.25

0.5

0.75

Fig. 2. Comparison of the numerical results of F 0ðnÞ with the analytic approximations (40) given by

the homotopy analysis method when �h ¼ �1. Dashed line: 10th-order HAM approximation when

j ¼ 1=5; dash-dotted line: 10th-order HAM approximation when j ¼ 2=5; dash-dot-dotted line:

10th-order HAM approximation when j ¼ 3=5; solid line: 20th-order HAM approximation when

j ¼ 4=5; circle: numerical solution when j ¼ 1=5; square: numerical solution when j ¼ 2=5; filled

circle: numerical solution when j ¼ 3=5; filled square: numerical solution when j ¼ 4=5.
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3. Homotopy-Padé approach

As verified in our previous publications [7,9–13], it is the auxiliary parameter

�h which provides us with a simple way to adjust or control the convergence rate

and region of approximations given by the homotopy analysis method. Al-

ternatively, in many (but not all) cases the convergence rate and/or region of



510 S. Liao / Appl. Math. Comput. 147 (2004) 499–513
approximations given by the homotopy analysis method can be greatly en-

larged by the so-called Homotopy-Pad�ee approach proposed by Liao and
Cheung [13]. To explain it, consider the series
Uðn; qÞ � F0ðnÞ þ
X2n
m¼1

FmðnÞqm: ð45Þ
Applying the traditional ½n; n� Pad�ee approximant to above power series of q,
we have
Uðn; qÞ �
Pn

i¼0 �n;iðnÞqiPn
i¼0 ln;iðnÞqi

: ð46Þ
Setting q ¼ 1 in above expression, we have due to (20) that
F ðnÞ �
Pn

i¼0 �n;iðnÞPn
i¼0 ln;iðnÞ

: ð47Þ
Different from the traditional Pad�ee approximant, the functions �n;iðnÞ and

ln;iðnÞ are not necessary to be power functions of n at all. Similarly, employing

the traditional ½n; n� Pad�ee approximant to the series
o2Uðn; qÞ
on2

����
n¼0

� F 00
0 ð0Þ þ

X2n
m¼1

F 00
mð0Þqm; ð48Þ
we have
o2Uðn; qÞ
on2

����
n¼0

�
Pn

i¼0 rn;iqi

1þ
Pn

i¼1 qn;iqi
; ð49Þ
which gives due to (20) that
F 00ð0Þ �
Pn

i¼0 rn;i

1þ
Pn

i¼1 qn;i
ð50Þ
by setting q ¼ 1. It is interesting that all of the functions �n;iðnÞ, ln;iðnÞ and the
constants rn;i, qn;i are independent upon the auxiliary parameter �h. Thus, the
results given by the homotopy-Pad�ee approach are independent upon the aux-

iliary parameter �h. Besides, it is found that the homotopy-Pad�ee approximant

converges faster than the traditional Pad�ee approximant. The same qualitative

conclusions were reported by Liao and Cheung [13].

It is found that when j ¼ 1=3 the ½n; n� homotopy-Pad�ee approximant of

F 00ð0Þ converges quickly to the exact value F 00ð0Þ ¼ �0:56144919, as shown in

Table 2. Besides, the corresponding ½5; 5� homotopy-Pad�ee approximant of F ðnÞ
is more accurate than the 10th-order approximation and agrees well with the

exact solution (44), as shown in Fig. 3. Furthermore, it is found that the ho-

motopy-Pad�ee approaches mentioned above are valid for the whole 0 < j < 1



Table 2

The ½n; n� homotopy-Pad�ee approximant of F 00ð0Þ when j ¼ 1=3

n Homotopy-Pad�ee approximant of F 00ð0Þ
2 )0.5609771
4 )0.5613269
6 )0.5616108
8 )0.5614565
10 )0.5614483
12 )0.5614489
14 )0.5614449
16 )0.56144923
17 )0.56144921
18 )0.56144923
19 )0.56144919
20 )0.56144919

ξ

F
(ξ

)

0 250 500 750 1000
0

5

10

15

20

25

30

35

40

45

Fig. 3. Comparison of the exact solution (44) of F ðnÞ with the homotopy-Pad�ee approximation (47)

when j ¼ 1=3. Dashed line: ½1; 1� homotopy-Pad�ee approximation; dash-dotted line: ½3; 3� homot-

opy-Pad�ee approximation; solid line: ½5; 5� homotopy-Pad�ee approximation; circle: exact solution

(44).
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and the corresponding series of F ðnÞ and F 00ð0Þ converge rather quickly. The

convergent analytic results of F 00ð0Þ are listed in Table 3, which agree quite well

with Kuiken�s numerical results [14].



Table 3

The convergent analytic values of F 00ð0Þ given by the homotopy analysis method

j F 00ð0Þ
0.1 )0.215052
0.2 )0.381913
0.3 )0.519994
0.4 )0.638989
0.5 )0.744394
0.6 )0.839613
0.7 )0.926891
0.8 )1.007792
0.9 )1.083447
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4. Conclusions

In this paper a powerful, easy-to-use analytic technique for nonlinear

problems in general, namely the homotopy analysis method, is further im-

proved and systematically described through a typical nonlinear problem, i.e.

the viscous boundary layer flow due to a moving sheet, governed by (2) and (3).
A usual procedure of the homotopy analysis method is proposed for the first

time. Two rules, the rule of solution expression and the rule of coefficient

ergodicity, are proposed, which play important roles in the frame of the ho-

motopy analysis method and simplify its applications in science and engi-

neering. An explicit analytic solution (41) of considered nonlinear problem is

given for the first time, with recursive formulas (30)–(39) for coefficients. This

analytic solution agrees well with numerical results and can be regarded (when

�16 �h < 0) as a definition of the solution of the nonlinear equations (5) and
(6).

This paper shows us the validity and great potential of the homotopy

analysis method for nonlinear problems in science and engineering.
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