Copy reference, caption or embed code
- Equilibrium States for Partially Hyperbolic Maps with One-Dimensional Center
![π-1(B(x,β))≃B(x,β)×π-1({x})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{-1}(B(x, \beta )) \simeq B(x, \beta ) \times \pi ^{-1}(\{x\})$$\end{document} represented for a two-dimensional case, in which we have dynamical coherence and the center leaves are well defined](https://www.researchgate.net/publication/375914063/figure/fig1/AS:11431281214853874@1703818848656/p-1Bx-bBx-bp-1xdocumentclass12ptminimal-usepackageamsmath_Q320.jpg)
π-1(B(x,β))≃B(x,β)×π-1({x})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{-1}(B(x, \beta )) \simeq B(x, \beta ) \times \pi ^{-1}(\{x\})$$\end{document} represented for a two-dimensional case, in which we have dynamical coherence and the center leaves are well defined
Reference
Caption
Embed code