Table 3 - uploaded by Pascual Pérez-Paredes
Content may be subject to copyright.
offers the top 50 multi-word keywords in the HUKT corpus. In the top 10 we find 4 noun phrases where the word crisis is a headword: migration crisis (284.85), migrant crisis (142.92), banking crisis (130.29) and financial crisis (119.01). Eurozone crisis is top 13 and next crisis is top 30.

offers the top 50 multi-word keywords in the HUKT corpus. In the top 10 we find 4 noun phrases where the word crisis is a headword: migration crisis (284.85), migrant crisis (142.92), banking crisis (130.29) and financial crisis (119.01). Eurozone crisis is top 13 and next crisis is top 30.

Source publication
Chapter
Full-text available
The UK voted to leave the EU on 23rd June 2016. A few months later, Alezander Van der Bellen won the Austrian presidential election and defeated the right-wing Austrian Freedom Party (FPÖ) candidate Norbert Hofer on 4th December. This study seeks to contribute to our understanding of how populist discourse in the UK right-wing tabloids used Austria...

Context in source publication

Context 1
... word sketch and multi-word keyword analyses reveal that the Austrian far-right is not explicitly associated with collocates other than neutral descriptors. Unsurprisingly, when it comes to the EU, the right-wing media show no hesitation in blaming the EU or Brussels (Geddes, 2013) for many of the issues outlined in Table 3. An exploration of the concordance lines of European suggests that this is often used to portray threats to the common people's values and the logic of identity pursued by populists as opposed to the discourse of constitutional democracies as guarantors of individual freedoms and " […] constitutive conditions of the democratic process" ( Abts and Rummens, 2007: 418). ...

Citations

Article
Full-text available
Este artículo presenta un análisis del discurso político populista de Hugo Chávez, exlíder político venezolano y otrora figura destacada del populismo de izquierda en Latinoamérica. El estudio se enfoca en la manera en que Chávez construyó discursivamente la identidad política de su grupo político-ideológico y la del grupo opuesto. Se describe el marco teórico, se presenta el corpus de textos objeto de estudio y se explica la metodología utilizada, que integra análisis cuantitativo y cualitativo a través de Lingüística de Corpus. El análisis se realiza mediante la interpretación de datos del corpus, que se presentan en gráficos y ejemplos, y se llega a conclusiones sobre la construcción de las identidades políticas en el discurso de Chávez. El artículo destaca la importancia del análisis del discurso político populista en la comprensión de fenómenos políticos contemporáneos y la necesidad de integrar métodos cuantitativos y cualitativos en los estudios del discurso político y populista.
Article
Full-text available
In this paper, we answer the multiple calls for systematic analysis of paradigms and subdisciplines in political science—the search for coherence within a fragmented field. We collected a large dataset of over seven hundred thousand writings in political science from Web of Science since 1946. We found at least two waves of political science development, from behaviorism to new institutionalism. Political science appeared to be more fragmented than literature suggests—instead of ten subdisciplines, we found 66 islands. However, despite fragmentation, there is also a tendency for integration in contemporary political science, as revealed by co-existence of several paradigms and coherent and interconnected topics of the “canon of political science,” as revealed by the core-periphery structure of topic networks. This was the first large-scale investigation of the entire political science field, possibly due to newly developed methods of bibliometric network analysis: temporal bibliometric analysis and island methods of clustering. Methodological contribution of this work to network science is evaluation of islands method of network clustering against a hierarchical cluster analysis for its ability to remove misleading information, allowing for a more meaningful clustering of large weighted networks.