i.p. treatments in each experimental group of experiment 2.

i.p. treatments in each experimental group of experiment 2.

Source publication
Article
Full-text available
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper...

Context in source publication

Context 1
... experiment 1, 34 rats were randomly assigned to 6 groups, as can be seen in Table 1: Five days before the experimental day, rats were handled for 5 Min/day, to Minimize the stress provoked by the experimental procedure. The injections for treatment 1 and treatment 2 were administered consecutively. ...

Citations

... Preclinical rat studies have also provided evidence for NAC's efficacy in reducing alcohol-related phenotypes, including consumption, seeking, motivation, reacquisition, and relapse-like behaviors [12,27,36,48,49,[63][64][65]. Moreover, NAC has been found to attenuate the alcohol-induced increases in expression of cFos in the rat nucleus accumbens [23]. Similarly, studies in mice have found that NAC blocks the development of alcohol conditioned place preference and alcohol-induced behavioral sensitization [47,58]. ...
Article
Full-text available
Increasing evidence suggests that individuals with alcohol use disorder (AUD) present with a disrupted glutamatergic system that underlies core components of addictive disorders, including drug relapse and low impulse control. N-acetylcysteine (NAC) is a cystine prodrug that has been found to promote glutamate homeostasis and drug abstinence. However, no studies to date have evaluated NAC’s effect on impulsivity in substance use disorders. Here we determined whether NAC would decrease alcohol-intake behaviors, in addition to improving impulse control, in long-term alcohol drinking male Wistar-Han rats. Before the start of the experiments, all rats were exposed to long-term intermittent access to 20% ethanol for at least seven weeks. Next, in different groups of rats, the effect of NAC (60 and/or 90 mg/kg) was evaluated on (i) voluntary alcohol drinking using a two-bottle free choice paradigm, (ii) the motivation to self-administer alcohol under a progressive ratio schedule of reinforcement, and (iii) relapse-like drinking using the alcohol deprivation effect model. Finally, (iv) NAC’s effect on impulse control was evaluated using the five-choice serial reaction time task. Results showed that NAC administration at 90 mg/kg significantly reduced relapse-like drinking and improved impulse control. In contrast, NAC had no effect on levels of alcohol drinking or motivation to drink alcohol. In conclusion, our findings continue to support the use of NAC as an adjuvant treatment for the maintenance of abstinence in AUD. Moreover, we provide evidence for NAC’s efficacy in improving impulse control following drinking, which warrants further investigation in substance use settings.
Chapter
The alcohol use disorder (AUD) is a complex, chronic pathology with a high relapse rate. Resumption to alcohol intake after a long period of abstinence is one of the most severe handicaps of this pathological condition. Consequently, in the last decade, a wealth of studies has focused on the neurobiological mechanisms involved in various phases of AUD, including relapse to alcohol consumption. To study the mechanism underlying the neurobiology of relapse, several preclinical models have been proposed and tested. In this chapter, we describe first these models and analyze their advantages and drawbacks. Second, we target our attention in a model with high translational power based on the alcohol deprivation effect (ADE). This is, probably, the most commonly used preclinical approach to study the ethanol relapse-like drinking behavior due to its face, predictive, and ecological validity. We will describe our recent reported results, which allowed to identify two subpopulations of animals according to the alcohol relapse-like drinking behavior displayed. The different neurobiological alterations observed between both subpopulations will be also presented. They may be probably involved in the relapse neurobiology. Finally, we will describe experimental data obtained using the ADE model. These results show that N-Acetylcysteine (NAC), an antioxidant drug with glutamatergic and antiinflammatory capabilities, is able to prevent ethanol relapse.
Article
Full-text available
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs. These include dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms, for example. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the “conductor of the orchestra,” as a novel approach to treat many SUDs concurrently. KYNA-NMDA-7nAChR pathophysiology may be the “command center” of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Article
Full-text available
Rationale Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine (NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats. Objectives To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were also explored. Methods The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested. Results NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing the observed downregulation of GLT1 and GLAST in Nacc. Conclusions NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new anti-relapse pharmacotherapies.