Figure 1 - uploaded by Yuri Borysovych Zelinskii
Content may be subject to copyright.
Source publication
The solution of one Zamfiresku's problem was obtained. We discuss the
unsolved questions related to the Mizel's problem.
Context in source publication
Context 1
... n ∈ A , x n → x . If x ∈ B then as we know the contradiction is obtained. Hence x does belong to A and A is a closed set. Similarly B is closed. The curve Γ is connected and therefore either A or B is empty. It means that Γ = A or Γ = B which implies that the curve Γ either contains a circular disk ∆ x or is contained in a circular disk ∆ x and it contradicts the fact that Γ is the convex curve of constant width and has a length πd . Hence C = ∅ and there exists a point x ∈ C . Some neighborhood of x is also contained in the set C . We shall move along the curve Γ to the left from the point x to the first point y that does not belong to C . It is obviously that y cannot belong neither to A nor to B and therefore Γ = C . Then by applying the Heine-Borel lemma we conclude that Γ is a circle and theorem 1 is proved. The row of similar opened problems in the plane and in n -dimensional case appears in connection with Mizel’s problem. Problem 1. Let C be closed Jordan curve in R 2 and for arbitrary algebraic closed curve L of order n from property that intersection C ∩ L contains m points follows, that C ∩ L contains no less then m + 1 points. Does there exists a number m , that from property above follows that C be algebraic curve of order n ? Problem 2. Let in previous question L be a circle and m = 3, is it true, that C also be a circle? Problem 3. Let in problem 1 L be an ellipse and m = 4, is it true, that C also be an ellipse? Problem 4. Will be a compact C a sphere in R n , if C divides the space, and if from the belonging n + 1 tops of the arbitrary rectangular parallelepiped to a compact C , it follows that one more top lies in C too? Last question is interesting even if C be ( n − 1)-dimensional manifold or boundary of a convex set. Problem 5. Let C be a ( n − 1)-dimensional manifold (or boundary of a convex domain) in R n and not exist ( n − 1)-dimensional sphere S n − 1 that intersection C ∩ S n − 1 contains n + 1 points exactly. Is it true, that C be a ( n − 1)-dimensional sphere? Corollary. On two-dimensional plane R 2 there exist compact sets, which divide the plane and such that no circles has with them in accuracy three crosses point. In particular class of similar sets includes the Shottka sets and the Sierpiński’s carpet. Problem 6. Remain or not result of [14] true, if we will consider compact set C ⊂ R 2 , where the complement R 2 \ C is not connected? Problem 7. Are cited results and problems 1-6 true, if we will consider that one point (top) on C is fixed? Next examples will show that in problems 1-3 it is impossible instead of curve, in analogy with Tkachuk’s result, consider compact set dividing plane. Example. We shall consider the domain D on plane, bounded by circle S 1 . The Surge from it thick in the domain D infinite ensemble of opened balls D i , which are not intersect pair wise even on border and also not intersect the circle S 1 . Then we receive fractal compact set K = D ̄ \ ∪ D i without interior points, which divides plane on countable set of components. But it is easy to see that arbitrary circle can intersect K on only one point or on infinite number of points (see Figure 1). Other examples we will receive if domains D ( D i ) be domains bounded by ellipses or squares. In this case intersections with circle or ellipse can contain one, two, four or infinite many points but never three points (see Figures 2 and 3). Those examples give negative answer to problem 8 from [19]. Other close problems possible to find in the work of Grünbaum ...
Similar publications
This paper presents formulae for calculation the solid angle of intersecting
spherical caps, conical surfaces and polyhedral cones.
We give several new examples of hexagonal 3-webs of circles in the plane and
give a survey on such webs.
Citations
... In 2012, Yu. Zelinskii, M. Tkachuk, B. Klishchuk obtained positive answer on one problem of Zamfirescu related to the Misel's problem [18, 20]. Theorem 2. The convex curve of constant width satisfying the infinitesimal rectangular condition is a circle. ...
... Theorem 5 [20] . A compact, which is a non degenerated Cartesian product in H n , is H-convex if and only if it is convex. ...
... With other opened problems, connected with Mizel's problem and generalized convexity, is possible look in [1, 20, 24]. ...
A subject, which is treated in this review, combines in one bundle some questions of convex, hypercomplex analysis, probability theory and geometry. In the following, we shall start with the known definition of the convexity, but further we shall generalize this definition on more broad classes of sets in Euclidean spaces. All terms, which are used in this article without determination can be found in [1]. Definition 1. A set E in a real Euclidean space R n is called convex, if for every pair of points a and b from E the closed interval [a, b] is subset of E. It is easy make sure that this definition is equivalent to the following. Definition 1a. A set E in a real Euclidean space R n is called convex, if an intersection of E with any real line l is connected.
Iн-т математики НАН України, 2012. — 280 с. Монография посвящена разработке геометрических и топологических методов анализа и исследованию с их помощью геометрии линейно выпук-лых множеств и смежных вопросов комплексного и выпуклого анализа. Большое внимание уделено разработке нового метода исследования ли-нейно выпуклых множеств в комплексных пространствах, основанного на изучении свойств многозначных отображений. Получена топологическая классификация обобщённо выпуклых множеств с гладкой границей. Уста-новлены комплексные аналоги ряда классических теорем (Хана–Банаха, Крейна–Мильмана, Каратеодори, Фенхеля–Моро). Дан подробный исто-рический обзор рассмотренных вопросов. Для специалистов по выпуклому и комплексному анализу и топологии в качестве справочника, а также для студентов-математиков. Монографiя присвячена розробцi геометричних i топологiчних методiв аналiзу i дослiдженню з їх допомогою геометрiї лiнiйно опуклих множин, а також сумiжних питань комплексного та опуклого аналiзу. Велику увагу придiлено розробцi нового методу дослiдження лiнiйно опуклих множин у комплексних просторах, який опирається на вивчення властивостей мно-гозначних вiдображень. Отримана топологiчна класифiкацiя узагальне-но опуклих множин з гладкою межею. Встановлено комплекснi аналоги низки класичних теорем (Хана–Банаха, Крейна–Мiльмана, Каратеодорi, Фенхеля–Моро). Дано детальний iсторичний огляд розглянутих питань. Для спецiалiстiв по опуклому i комплексному аналiзу та топологiї як до-вiдник, а також для студентiв-математикiв. Ответственный редактор: член-корреспондент НАН Украины Ю.Ю. Трохимчук