Figure 2 - available via license: CC BY
Content may be subject to copyright.
| chihuahua or muffin meme

| chihuahua or muffin meme

Source publication
Article
Full-text available
The incorporation of algorithmic procedures into the automation of image production has been gradual, but has reached critical mass over the past century, especially with the advent of photography, the introduction of digital computers and the use of artificial intelligence (AI) and machine learning (ML). Due to the increasingly significant influen...

Context in source publication

Context 1
... similar fashion to optical tricks used to fool the human eye into seeing two images in one depending on how one looks ( Figure 1), algorithmically produced images may also function on two levels: meeting our ways of seeing (Berger, 1973) with ways of machine seeing (Cox, 2016), vacillating between conceptual categoriesfor us and for computers. The chihuahua or muffin meme (Figure 2), for example, points to the fact that certain ML algorithms have misclassified images of muffins and chihuahuas interchangeably. There is thus a tension between images' human-readability and their legibility to machines. ...

Similar publications

Article
Full-text available
The incorporation of algorithmic procedures into the automation of image production has been gradual, but has reached critical mass over the past century, especially with the advent of photography, the introduction of digital computers and the use of artificial intelligence (AI) and machine learning (ML). Due to the increasingly significant influen...
Preprint
Full-text available
Let $(x_{i}, y_{i})_{i=1,\dots,n}$ denote independent samples from a general mixture distribution $\sum_{c\in\mathcal{C}}\rho_{c}P_{c}^{x}$, and consider the hypothesis class of generalized linear models $\hat{y} = F(\Theta^{\top}x)$. In this work, we investigate the asymptotic joint statistics of the family of generalized linear estimators $(\Thet...

Citations

Thesis
Full-text available
This thesis addresses how current notions of image production remain tied to historical ideas which often prove inadequate for the description of visual artefacts of machine learning (ML). ML refers to the notion of simulating the process of information acquisition computationally, and when applied to the generation of images, it enables visual content to be influenced based on the statistical analysis of data. The increasing use of ML in image production highlights several aspects which have been present in older forms of media, but which now take on new forms and relevance, especially within artistic contexts. This research seeks to clarify the mediating role played by visual technologies and to demonstrate how images produced using ML offer new ways of approaching theories of the image. Images exist at the interstices between human perceptual experience and its technological mediation, which is especially relevant as the development and implementation of technologies offers new possibilities to produce visualisations from data. In so doing, technological mediation tangibly augments relationships between how images are produced, experienced and interpreted. The present incorporation of ML into various forms of visual media offers insight into this issue by enabling images to be produced as the result of the statistical analysis of datasets. Computational relations which are extracted and inferred between features within images help to construct learned representations which are in turn used to generate new images. This results in a form of computationally-determined representation which is informed by the interpretive processes performed by machines. Artists have taken great interest in the potential of ML, in an aesthetic, but also a processual capacity, often considering its relation to human vision. Their productions offer insight into novel aspects of ML in the creation of images through experimental practice which is informed by theory and by art history. Using and reflecting on ML, often in novel or reactionary ways, artistic and humanistic perspectives provide vital counter-narratives to those of computer science (CS), and which facilitate cross-disciplinary understanding. In spite of the hype which surrounds it currently, ML does not present an entirely novel approach to image production and rather builds upon existing modalities and narratives surrounding the technical production of images. Notions of technically produced images often lean heavily on historical narratives regarding the technical production of images, even perpetuating inaccuracies from them. These tend to misconstrue images either as inherently accurate reflections of reality or as the product of artificial perception and genius, by virtue of their engagement with technological processes. This research therefore adopts a media archaeological approach, in order to understand how processes that have been present in visual media much longer than the use of ML continue to colour discourse.