Fig 3 - uploaded by Mohammed Mynuddin
Content may be subject to copyright.
Source publication
In this paper is simulated the time-domain unit sample response of sine function and frequency-domain response of sine function. Digital filter plays an important role in today's world of communication and computation. Without digital filter we cannot think about proper communication because noise occurs in channel. For removing noise or cancellati...
Similar publications
Fast optimal estimates are often required in control and signal processing. In this paper, we discuss an
approach to optimal finite impulse response (OFIR) filtering for discrete time-variant systems using finite measurements. The mean square error is minimized to obtain the batch OFIR algorithm which requires measurements on an a finite horizon of...
Typical approach to non-integer order filtering consists of analogue design and implementation. Digital realization of non-integer order systems is susceptible to problems such as infinite memory requirement and sensitivity to numerical errors. The aim of this paper is to present two efficient methods for digital realization of non-integer order fi...
We focus on the design of finite impulse response (FIR) multiple notch filters. To reduce the computational complexity and hardware implementation complexity, a novel algorithm is developed based on the mixture of the tuning of notch frequencies and the sparsity of filter coefficients. The proposed design procedure can be carried out as follow: fir...
We propose to improve the accuracy of FIR filters for computing convolution transforms for smooth non-bandlimited (NBL) signals by designing filters by the identification method with using a pair of bandlimited portions of the chosen NBL input and output signals related with each other by the given transform. A design example of type IV linear phas...
Citations
... A digital low-pass filter, which only allows a signal with a frequency of less than the preset cut-off frequency to pass [24,25], was applied to reduce data noise, therefore eliminating short-term fluctuation in the ruts. Low-pass filters can be designed with various algorithms, and in our study a finite impulse response filter with a Hamming window was applied [26], in which the two most important factors were the filter order and the cut-off frequency. Similar filters were applied to both the MLS and the down-sampled TLS data, while the filter order, which determined the filter window length, was 25 for the MLS data, and 15 for the TLS data. ...
This paper studied the applicability of the Roamer-R4DW mobile laser scanning (MLS) system for road rut depth measurement. The MLS system was developed by the Finnish Geospatial Research Institute (FGI), and consists of two mobile laser scanners and a Global Navigation Satellite System (GNSS)-inertial measurement unit (IMU) positioning system. In the study, a fully automatic algorithm was developed to calculate and analyze the rut depths, and verified in 64 reference pavement plots (1.0 m × 3.5 m). We showed that terrestrial laser scanning (TLS) data is an adequate reference for MLS-based rutting studies. The MLS-derived rut depths based on 64 plots resulted in 1.4 mm random error, which can be considered adequate precision for operational rutting depth measurements. Such data, also covering the area outside the pavement, would be ideal for multiple road environment applications since the same data can also be used in applications, from high-definition maps to autonomous car navigation and digitalization of street environments over time and in space.
Fetal heart rate using Doppler Ultrasound is a standard method to assess fetal health. Examination of the fetal heart with a Doppler device is more convenient for women. Fetal Doppler can accidentally take the mother's heartbeat. A filter is needed to enhance the audibility of fetal heartbeats while suppressing unwanted frequencies and noise. The normal fetal heart rate ranges from 120 to 160 beats per minute, or 2 Hz - 3 Hz. This frequency can be filtered using a bandpass filter. the digital FIR bandpass filter were created using the Hamming and Hanning window methods. The results of the FIR filter with the Hamming and Hanning window, Orde 100 Hanning gave the best frequency bandwidth range which was 1.833 Hz to 3.167 Hz. Orde 20 Hamming and Hanning had the shortest delay +- 2 s and Orde 100 Hamming and Hanning had the longest delay +- 6s. For the noise at 1.6 Hz, Orde 100 Hamming and Orde 100 Hanning the signal level of the signal output is the same as the desired signal level. For the noise at 3.1 Hz, Orde 100 Hamming and Orde 100 Hanning had the signal level of the signal output is almost the same as the desired signal level. At the frequency point of 1.6 Hz, the noise signal at the input has a magnitude response 2533, it is a decrease after passing through the filter to = 0. At the frequency point of 3.1 Hz, the noise signal at the input has a magnitude response 2246, and there is a decrease after passing through the filter to 167.7. From this study, we can choose 100 orde Hanning because it gave the best frequency bandwidth range which was 1.833 Hz to 3.167 Hz, the delay of +- 6s.