Figure - uploaded by Martin Bloemendal
Content may be subject to copyright.
Water quality analysis parameters

Water quality analysis parameters

Source publication
Conference Paper
Full-text available
Aquifer Thermal Energy Storage (ATES) systems combined with a heat pump save energy for space heating and cooling of buildings. In most countries the temperature of the stored heat is allowed up to 25-30°C. However, when heat is available at higher temperatures (e.g. waste heat, solar heat), it is more efficient to store higher temperatures because...

Context in source publication

Context 1
... each monitoring round we have 2 water samples that have been heated and 1 reference. The parameters, the water samples are analyzed for are indicated in Table 2. As a result of the limited extent of the thermal radius, at sampling monitoring point at about 20 meters from the warm only a limited temperature change is observed at the end of the summer. ...

Similar publications

Conference Paper
Full-text available
The improvement of the heat storage technologies will allow the security of supply and dispatchability of renewable energy sources (RES), enabling their better integration in the electricity grid. This work proposes a solution by means of a Compressed Heat Energy STorage (CHEST) technology. In CHEST concept a high-temperature heat pump (HTHP) uses...
Article
Full-text available
The rise in distributed renewable energy generation creates a growing need to find viable solutions for energy storage to match energy demand and supply at any time. This paper evaluates the possibility of using swimming pools as a long-term cooling energy storage solution, i.e., Swimming Pool Thermal Energy Storage (SPTES). This technology allows...
Article
Full-text available
As a means of improving performance and alleviating thermal imbalance issues associated with ground source heat pump systems, ground thermal energy storage is becoming increasingly appealing. Moreover, an efficient means of transferring energy from the borehole to the surroundings is crucial. In this paper, an experimental and numerical investigati...
Article
Full-text available
The urgent energy transition needs a better penetration of renewable energy in the world’s energy mix. The intermittency of renewables requires the use of longer-term storage. The present system uses water displacement, in a lined rock cavern or in an aerial pressurised vessel, as the virtual piston of compressor and expander functions in a carbon...
Article
Full-text available
Several studies show that heat pumps need to play a major role for space heating and hot water supply in highly decarbonised energy systems. The degree of elasticity of this additional electricity demand can have a significant impact on the electricity system. This paper investigates the effect of decentral heat pump flexibilisation through thermal...

Citations

... Heating needs currently outweigh cooling requirements for the overall system so the cold storage portion of the system has grown faster than the warm storage. The operators plan to address this imbalance by recovering and storing additional ambient heat (Bloemendal et al., 2019;2020). ...
Conference Paper
Full-text available
One of the critical challenges of the green energy transition is resolving the mismatch between energy generation provided by intermittent renewable energy sources such as solar and wind and the demand for energy. There is a need for large amounts of energy storage over a range of time scales (diurnal to seasonal) to better balance energy supply and demand. Subsurface geologic reservoirs provide the potential for storage of hot water that can be retrieved when needed and used for power generation or direct-use applications, such as district heating. It is important to identify potential issues associated with high-temperature reservoir thermal energy storage (HT-RTES) systems so that they can be mitigated, thus reducing the risks of these systems. This paper reviews past experiences from moderate and high-temperature reservoir thermal energy storage (RTES) projects, along with hot water and steam flood enhanced oil recovery (EOR) operations, to identify technical challenges encountered and evaluate possible ways to address them. Some of the identified technical problems that have impacted system performance include: 1) insufficient site characterization that failed to identify reservoir heterogeneity; 2) scaling resulting from precipitation of minerals having retrograde solubility that form with heating of formation brines; 3) corrosion from low pH or high salinity brines; 4) thermal breakthrough between hot and cold wells due to insufficient spacing. Proper design, characterization, construction, and operational practices can help reduce the risk of technical problems that could lead to reduced performance of these thermal energy storage systems.
... In practice, the temperature distribution can be monitored over the entire thickness of the aquifer during HT-ATES. In the HT-ATES field pilot of Bloemendal et al. (2019), distributed temperature sensing (DTS) with optical fibres to monitor the temperature distribution over aquifer depth was used. A similar setup is chosen to investigate if the thermal front can be monitored properly for the simulated scenarios in this study. ...
Article
The occurrence of free thermal convection negatively affects thermal recovery efficiencies of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems. In this study the potential of applying a Multiple Partially Penetrating Well (MPPW) configuration to counteract the impact for seasonal HT-ATES is tested through numerical modeling with SEAWATv4. For scenarios where the thermal front is close to the HT-ATES well-screen and free thermal convection has considerable effect on the thermal recovery efficiency, the use of a MPPW configuration has great potential. Storage at a moderate temperature contrast (ΔT = 40 °C) between the hot injection volume and cold ambient groundwater in a high-permeability aquifer resulted in significant improvement of the thermal recovery efficiency with a MPPW configuration targeting injection in lower parts of the aquifer and recovery in the upper parts. For conventional, fully screened HT-ATES a thermal recovery efficiency of 0.43 is obtained while this is 0.59 with the MPPW scheme in the first recovery cycle. This recovery efficiency of 0.59 is only 0.11 less than a theoretical case with no buoyancy effects. For seasonal HT-ATES cases that face severe free thermal convection, rapid accumulation of heat in the upper part of the aquifer is observed and the MPPW configuration is less effective due to the long period between injection and recovery. Especially for HT-ATES cases that require a cut-off temperature, thermal recovery can be significantly improved and prolonged. For storage temperatures of 60 and 80 °C in a high-permeability aquifer, approximately 4 times more abstracted usable heat is obtained with the MPPW setup while considering a cut-off temperature of 40 °C. Moreover, the present study shows that the use of MPPW configurations in heterogeneous aquifers should be carefully planned. Improper application of MPPW is particularly vulnerable for simplification of the aquifer characteristics, and therefore proper site heterogeneity investigation and operational monitoring are required to benefit from optimal MPPW operation during HT-ATES.
... Each of the case studies examined are briefly described below, and key lessons learned are summarized. Sanner et al., 2005;Böttcher, 2012;Wolfgram et al., 2011;Fleuchaus et al., 2020;Kabus et al., 2005;Seibt and Wolfgramm, 2008;Kabus et al., 2009;Seibt and Kabus, 2006;Wolfgramm and Seibt, 2006;Vetter et al., 2012;Schmidt and Müller-Steinhagen, 2004;Nußbicker-Lux et al., 2009;Bauer et al., 2010;Pavlov and Olesen, 2012;Schmidt et al., 2000;Bartels et al., 2003;Agster et al., 2004;Ueckert et al., 2016;Ueckert and Baumann, 2019;Hopman, 2015;Oerlemans, 2018;Bloemendal et al., 2019; ...
... An ATES system has been operating since 2012 at the Koppert-Cress horticulture plant in Monster, the Netherlands, with the purpose of heating greenhouses (Bloemendal et al., 2019;). The original system was designed to store water heated to 25°C, but the system was upgraded in 2015 to allow injection of fluids up to 45°C. ...
Article
Full-text available
Aquifer Thermal Energy Storage (ATES) systems are a promising solution for sustainable energy storage, leveraging underground aquifers to store and retrieve thermal energy for heating and cooling. As the global energy sector faces rising energy demands, climate change, and the depletion of fossil fuels, transitioning to renewable energy sources is imperative. ATES systems contribute to these efforts by reducing greenhouse gas (GHG) emissions and improving energy efficiency. This review uses the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) methodology as a systematic approach to collect and analyze relevant literature. It highlights trends, gaps, and advancements in ATES systems, focusing on simulation methods, environmental impacts, and economic feasibility. Tools like MODFLOW, FEFLOW, and COMSOL Multiphysics are emphasized for optimizing design and system performance. Europe is identified as a continent with the most favorable predispositions for ATES implementation due to its diverse and abundant aquifer systems, strong policy frameworks supporting renewable energy, and advancements in subsurface energy technologies.
Article
Full-text available
Underground heat storage is an important element in accelerating the energy transition. It can significantly contribute to CO 2 emission reduction and cost savings since it is one of the cheapest forms of energy storage and it enables the seasonal storage of large energy surpluses from sustainable sources, e.g. wind, sun, geothermal. Numerical models are used for the prediction of thermal behavior important in establishing the high efficiency of the high temperature aquifer thermal energy storage (HT-ATES) systems. However, the lack of exact knowledge of the subsurface conditions introduces modeling uncertainty. It is therefore important to employ approaches that reduce subsurface uncertainty. History matching is a methodology where the numerical models are updated to match historical observations that will in turn not only increase understanding of the subsurface but also improve accuracy of the model predictability of future behavior. In this research, models of the first large-scale operational HT-ATES system in Middenmeer, the Netherlands, were used to evaluate the thermal evolution in the storage aquifer and the over- and underburden clay layers. The HT-ATES system, consisting of a hot and warm well, with a monitoring well inbetween, became operational in the summer of 2021. The extensive monitoring program implemented for the first few operational years provided an opportunity to study the performance of such a system from an environmental and operational point of view. A state-of-the-art assisted history matching approach was applied to the first storage cycle, using a coupling between history matching software and the thermal flow simulator. This approach was compared to a more traditional single-model manual history matching method. Rock properties of the aquifer and over- and underburden layers were updated in the randomly generated prior ensemble of models to fit the simulated temperature evolution measured down the monitoring well with the distributed temperature sensing (DTS) data. The observations gathered during the second year of operations were used to validate the accuracy of the prediction capabilities of the updated models. The obtained results indicate the value of history matching to improve understanding of the subsurface conditions for HT-ATES systems and obtain models with better predictability of the future behavior of heat in the storage reservoir and overburden formations. Such improved models are instrumental in providing engineers with a better quantitative grip on the environmentally responsible storage potential and heat deliverability of the target storage site, which is important to achieve cost-effective site-specific design (e.g. number of wells, well placement) and performing operational strategies (e.g. injection/production rates and temperatures) for new HT-ATES systems. Moreover, the benefits of the assisted history matching approach over manual method are highlighted and both approaches are validated where the assisted history matching method produced more accurate predictions than the manual approach.
Article
Optimization of aquifer thermal energy storage (ATES) performance in a building system is an important topic for maximizing the seasonal offset between energy demand and supply and minimizing the building's primary energy consumption. To evaluate ATES performance with bidirectional operation, this study develops an analytical solution-based model to simulate the spatiotemporal thermal response in an aquifer. The model consists of three temperature response functions, similar to the G functions in borehole thermal energy storage (BTES), to estimate the transient temperature profile in the aquifer during seasonally varying injection and extraction of hot/cold water. Applying machine learning (ML) based data classification and regression techniques to the results of a series of finite element (FE) benchmark simulations of typical ATES configurations, model input parameters are linked to the subsurface thermal, hydrogeological, and ATES operational properties. Compared to the benchmark simulation results, the errors of the proposed model in estimating the annual energy storage and locating the thermally affected area are about 3 % and 1 %, respectively. The model was applied to a previous short-term case study, and the error in the transient production temperature estimation is about 1 %. The long-term heat recovery ratio estimated from the model also compares well to those calculated from the previous study and the validated numerical model. Because of its fast computation, the proposed model can be coupled with the individual building system simulation and used for preliminary ATES design, and this will allow for greater exploration of ATES operational space and, therefore, better choices of ATES operating conditions. The proposed model can also be coupled with the district heating and cooling network simulation for computationally efficient city-scale long-term ATES potential assessment.
Article
Aquifer Thermal Energy Storage (ATES) uses excess thermal energy to heat water which is stored in an aquifer until it is needed, at which time the hot water is recovered and the heat used for some purpose e.g. electricity generation. The recovery efficiency (i.e. the ratio of heat energy recovered to heat energy injected, R) is one of the most important factors dictating the viability of ATES systems. The variation of R with various aquifer properties and operating parameters is explored for high temperature (HT) ATES systems with injection temperatures ≥90∘C, extending the results of previous studies to higher temperatures and a broader range of aquifer properties and operating conditions. R values are calculated using numerical models of a single-well ATES system, which is validated by comparison with previous field and modelling studies. The results show that HT-ATES may be viable with injection temperatures as high as 300 ∘C, depending on the aquifer properties and operating parameters. Daily cycles are very efficient over a broad range of conditions, whereas the efficiency of annual cycles is much more variable. The most important parameters governing R are aquifer thickness, injection temperature, horizontal and vertical permeability, and dispersion length. The R values are used to derive an improved version of the Rayleigh number relationship proposed by Schout et al. (2014), extending the applicability of this relationship to daily cycles and improving its accuracy for annual cycles. An alternative method for estimating R using a convolutional neural network is proposed. The calculated R values may be considered best-case because aspects such as background groundwater flow and geochemical effects are ignored. Practical factors such as energy supply/demand requirements, reservoir and above-ground engineering, financial or regulatory aspects, and public acceptance are not considered. Nevertheless, the results of this study can be used for rapid screening of large areas for potential HT-ATES sites, defining requirements for potential sites, and estimating R values for specific sites, before performing detailed feasibility studies.