Figure 3 - uploaded by Mike Steglich
Content may be subject to copyright.
User interface of LogisticsLab/CPP The left side of the CPP window is used to visualise the network graph depending on the data entered. If the network graph contains connections between the nodes, these are shown as edges. Directed edges are represented by arrows. Undirected edges do not have arrowheads. The data area on the right-hand side of the CPP user interface contains four worksheets for entering data and outputting optimisation results (Problem, Nodes, Edges, Solution). The first step using LogisticsLab/CPP is to generate a new problem. To do this, the menu item File → New Problem or the New Problem button in the toolbar is selected. In addition to a comment, the number of nodes (in this case 91 nodes) and the maximum distance between the nodes (Max. distance) must be entered (Figure 4). The latter is used when generating randomly based coordinates (Coordinates → Randomly). The generated coordinates can be edited subsequently.

User interface of LogisticsLab/CPP The left side of the CPP window is used to visualise the network graph depending on the data entered. If the network graph contains connections between the nodes, these are shown as edges. Directed edges are represented by arrows. Undirected edges do not have arrowheads. The data area on the right-hand side of the CPP user interface contains four worksheets for entering data and outputting optimisation results (Problem, Nodes, Edges, Solution). The first step using LogisticsLab/CPP is to generate a new problem. To do this, the menu item File → New Problem or the New Problem button in the toolbar is selected. In addition to a comment, the number of nodes (in this case 91 nodes) and the maximum distance between the nodes (Max. distance) must be entered (Figure 4). The latter is used when generating randomly based coordinates (Coordinates → Randomly). The generated coordinates can be edited subsequently.

Source publication
Article
Full-text available
Logistical decision problems are a part of many courses in the field of logistics, management and operations research. It makes sense to illustrate these optimisation problems using case studies, which can be reproduced by students using suitable software. Often, solver add-ins in spreadsheets programs or general optimisation software are used, whi...

Contexts in source publication

Context 1
... starting the application, the user interface shown in Figure 3 appears, which, like all other components of LogisticsLab, consists of a network area and a data area. The first step using LogisticsLab/CPP is to generate a new problem. ...
Context 2
... names, the coordinates and the inhabitants of the towns and municipalities can be taken from an Excel file of the German Federal Statistical Office (Statistisches Bundesamt, 2020). However, it is recommended to copy the mentioned data from this Excel file and paste it into the CLP file opened in a spreadsheet program ( Figure 13). The Sources tab (Figure 14) contains the details of the locations whose positions are to be determined by the optimisation. ...
Context 3
... should also be mentioned for the discrete problem that the solutions of different optimisation runs may differ due to the non-deterministic nature of the underlying heuristic. The discrete solution is shown as graphical solution ( Figure 23) in the network area and the coordinates are shown in the Sources tab (Figure 24). ...

Citations

Conference Paper
Full-text available
Logistische Entscheidungsprobleme sind Bestandteil vieler Lehrveranstaltungen in den Bereichen Logistik, Management und Operations Research. Es ist sinnvoll, diese Entscheidungsprobleme anhand von Fallstudien zu veranschaulichen, die von Studierenden mit geeigneter Software reproduziert und eigenständig gelöst werden können. Derartige Softwaresysteme müssen den größten Teil der in solchen Lehrveranstaltungen diskutierten Probleme abbilden und eine interaktive und intuitive Vorgehensweise bei der Problemlösung ermöglichen. Eine weitere wichtige Anforderung an solche Systeme besteht darin, die Studierenden bei der zeitaufwendigen Erfassung von Daten, wie z.B. der Koordinaten der Knoten eines logistischen Netzwerks sowie der Distanzen bzw. Fahrtzeiten, zu unterstützen. Weiterhin sollten logistische Entscheidungsunterstützungssysteme eine interaktive Darstellung des Problems und der zugehörigen Lösung in einer Karte ermöglichen. Diese Aspekte können durch die Integration von webbasierten Geoinformationssystemen, wie z.B. Google Maps oder OpenStreetMap, realisiert werden. Es ist allerdings festzustellen, dass die Mehrzahl der aus inhaltlicher Sicht für Lehrveranstaltungen verwendbaren Softwaresysteme keine Geoinformationssysteme integriert hat. Diese fehlenden Funktionalitäten führten zur Motivation, die akademische Logistiksoftware LogisticsLab um OpenStreetMap-Funktionalitäten zu erweitern. Der vorliegende Beitrag stellt diese Integration und die dadurch verbesserten Möglichkeiten der Behandlung realistischer logistischer Entscheidungsprobleme in Lehrveranstaltungen vor. Mit der damit einhergehenden stärkeren Fokussierung auf das Verständnis und die Interpretation der Lösung des behandelten Problems kann auf interaktive und intuitive Weise ein besseres Verständnis für logistische Entscheidungen erlangt werden.