Figure - uploaded by Phalisteen Sultan
Content may be subject to copyright.
Traditional uses of different parts (leaves, stem and roots) of Rumex dentatus from different places.

Traditional uses of different parts (leaves, stem and roots) of Rumex dentatus from different places.

Source publication
Article
Full-text available
Objectives: Rumex dentatus L. (polygonaceae) is one of the most important species of genus Rumex widely utilized for the treatment of various human diseases. Most parts of the plant species like leaves, shoots and roots are found to be rich in many pharmacologically important bioactive constituents that are useful against many diseases like acaria...

Contexts in source publication

Context 1
... roots and leaves were also used in treating diseases like foot and mouth infections, asthma, cough, jaundice, fever, weakness and scabies) [57]. Thus from the above discussion it is clear that the plant has an inordinate traditional importance and has a wide scope of being used as a traditional herb in India (Table 1). ...
Context 2
... roots and leaves were also used in treating diseases like foot and mouth infections, asthma, cough, jaundice, fever, weakness and scabies) [57]. Thus from the above discussion it is clear that the plant has an inordinate traditional importance and has a wide scope of being used as a traditional herb in India (Table 1). ...

Citations

... It also inhibits the Wnt/b-catenin signaling pathway by downregulating target genes, including c-Myc, Cyclin-D1, and TCF4. In addition, endocrocin is reported to have anticancer properties, although there is a lack of available data about the possible mechanisms of its action 31 . Based on the in silico studies, we assumed that these 4 compounds could have important contributions to the overall promising anticancer properties of RO extract. ...
Article
Full-text available
The continuous increase in cancer rates, failure of conventional chemotherapies to control the disease, and excessive toxicity of chemotherapies clearly demand alternative approaches. Natural products contain many constituents that can act on various bodily targets to induce pharmacodynamic responses. This study aimed to explore the combined anticancer effects of Rumex obtusifolius (RO) extract and the chemotherapeutic agent 5-fluorouracil (5-FU) on specific molecular targets involved in cancer progression. By focusing on the PI3K/Akt signaling pathway and its related components, such as cytokines, growth factors (TNFa, VEGFa), and enzymes (Arginase, NOS, COX-2, MMP-2), this research sought to elucidate the molecular mechanisms underlying the anticancer effects of RO extract, both independently and in combination with 5-FU, in non-small lung adenocarcinoma A549 cells. The study also investigated the potential interactions of compounds identified by HPLC/MS/MS of RO on PI3K/Akt in the active site pocket through an in silico analysis. The ultimate goal was to identify potent therapeutic combinations that effectively inhibit, prevent or delay cancer development with minimal side effects. The results revealed that the combined treatment of 5-FU and RO demonstrated a significant reduction in TNFa levels, comparable to the effect observed with RO alone. RO modulated the PI3K/Akt pathway, influencing the phosphorylated and total amounts of these proteins during the combined treatment. Notably, COX-2, a key player in inflammatory processes, substantially decreased with the combination treatment. Caspase-3 activity, indicative of apoptosis, increased by 1.8 times in the combined treatment compared to separate treatments. In addition, the in silico analyses explored the binding affinities and interactions of RO's major phytochemicals with intracellular targets, revealing a high affinity for PI3K and Akt. These findings suggest that the combined treatment induces apoptosis in A549 cells by regulating the PI3K/Akt pathway.
... Pharmacological information shows that Emodin has a wide range of biological activities, including antibacterial, antiviral, and anticancer effects, and its effect on anti-biofilm microbial activity has also been reported. Moreover, Emodin has been found to be non-toxic to mammalian cells at therapeutic concentrations, which is an important consideration for clinical [18][19][20]. To overcome these adverse effects, scientists have suggested the use of biological nano-biocarriers. ...
Article
Full-text available
Background This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. Materials and methods After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm² for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. Results The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. Discussion The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.
... At present, the global scientific community is dedicated to refining the precision of infection targeting through the advancement of innovative tools. This pursuit has propelled the exploration of plant-derived medicinal options, as a response to the time-intensive nature of synthetic drug production (Khaliq et al., 2023). Prior studies have reported the diverse medicinal uses of R. dentatus in traditional folk medicine, encompassing treatments for ailments such as acariasis, eczema, diarrhea, constipation, astringent conditions, dermatitis, diuretic effects, cholagogue properties, and tonic applications (Abou Elfotoh et al., 2013, Humeera et al., 2013. ...
Article
Full-text available
The control of infections is one of the key strategies to treat cuts, wounds, lung, and skin infections. In this study the folkloric use of Rumex dentatus (R. dentatus) roots in the mentioned conditions was scientifically investigated. The methanolic (MeOH) crude extract of R. dentatus root was fractionated (n-hexane, ethyl acetate and water) via bioassay-guided method, and its antibacterial activity was evaluated using the agar well diffusion and Minimum inhibitory concentration (MIC) assays against clinical isolate of Pseudomonas aeruginosa (P. aeruginosa). The antibiofilm activity was measured using the crystal violet staining method. The crude extract, fractions and sub-fractions tested showed the MICs values ranging from 200 to 1000 μg/mL respectively. Among the fractions, notably, the water fraction exhibited the highest activity against P. aeruginosa. The water fraction was then subjected to thin layer chromatography (TLC). Following spectrometric analysis using HPLC-ESI-Q-TOF-MS, gallic acid and emodin were identified as the primary components within the same fraction, responsible for eliciting antibacterial and antibiofilm effects. The in-silico studies conducted with AutoDock Vina on the LasR protein, using both isolated gallic acid and emodin, confirm the binding affinity of these molecules to the active sites of the LasR protein that has regulatory role in building of biofilm formation and its pathogenicity. By scientifically validating the infection-controlling properties of R. dentatus, this research provides compelling evidence that supports its traditional use as reported in folklore. Moreover, this study contributes to our understanding of the plant's potential in managing infections, thereby substantiating its traditional therapeutic application in a scientific context.
Article
Full-text available
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Preprint
Full-text available
In this study, the objective was to explore novel strategies for improving the efficacy of anticancer therapy. The focus was on investigating the antiproliferative effects of combining Rumex obtusifolius extract (RO) with the chemotherapeutic agent 5-Fluorouracil (5-FU) in non-small A549 lung cancer cells (NSCLC). Key factors such as the PI3K/Akt cell signaling system, cytokines, growth factors (TNFa, VEGFa), and enzymes (Arginase, NOS, COX-2, MMP-2) were analyzed to assess the impact of the combination treatment. Results revealed that the combined treatment of 5-FU and RO demonstrated a significant reduction in TNFa levels, comparable to the effect observed with RO alone. RO was found to modulate the PI3K/Akt pathway, influencing the phosphorylated and total amounts of these proteins during the combined treatment. Notably, COX-2, a key player in inflammatory processes, substantially decreased with the combination treatment. Caspase-3 activity, indicative of apoptosis, increased by 1.8 times in the combined treatment compared to separate treatments. In addition, in silico analyses explored the binding affinities and interactions of RO's major phytochemicals with intracellular targets, revealing a high affinity for PI3K and Akt. These findings suggest that the combined treatment induces apoptosis in A549 cells by regulating the PI3K/Akt pathway.
Article
Tamarindus indica L., is widely used tree in ayurvedic medicine. Here, we aimed to understand the presence of important constituents in seeds and peel of Tamarind fruits and their biological activities. Hence, seeds and peel of Tamarind fruits are used for further extraction process by soxhlet method (chloroform and ethyl acetate solvents). Results suggest that the ethyl acetate extract (seeds) consists of terpenoids (72.29 ± 0.513 mg/g), phenolic content (68.67 ± 2.11 mg/g) and flavonoids (26.36 ± 2.03 mg/g) whereas chloroform extract (seeds) has terpenoids (42.29 ± 0.98 mg/g). Similarly, chloroform extract (peel) has terpenoids (25.96 ± 3.20 mg/g) and flavonoids (46.36 ± 2.03 mg/g) whereas ethyl acetate extract (peel) has terpenoids (62.93 ± 0.987 mg/g). Furthermore, anti-inflammation activity results revealed that the chloroform extract of peel was found to be more effective with IC50 of 226.14 µg/ml by protein denaturation analysis and with IC50 of 245.5 µg/ml on lipoxygenase inhibition activity. Chloroform extract (peel and seeds) shown better antioxidant activity using DPPH than ethyl acetate extract (peel and seeds). Ethyl acetate extract of seeds showed impressive potency by inhibiting the growth of fungus, Candida albicans. Additionally, ethyl acetate extract of seeds showed impressive potency inhibiting the growth of Escherichia coli than Bacillus cereus. GC–MS analysis shown the existence of diverse set of phytochemicals in each extract. Overall, comparative studies highlight the effectiveness of seeds extracts than peel extracts. Moreover, GC–MS results suggest that the seeds and peel extracts (chloroform and ethyl acetate) contains a wide range of compounds (including flavonoids, isovanillic acid, fatty acids and phenolic compounds) which can be utilized for therapeutic purpose.