Figure 5 - available via license: Creative Commons Attribution 4.0 International
Content may be subject to copyright.
Top of the atmosphere (TOA) radiative forcing of sulfate aerosols under all sky conditions. Left: Global mean TOA forcing over time. Right: Zonally averaged radiative forcing as average over time (21 months) .
Source publication
In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the 3rd largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, a requirement to get a long lasting stratospheric sulfate layer. The first eruption on March 17th injected 4.7 Tg SO2 into the stratosphere, th...
Contexts in source publication
Context 1
... BY 4.0 License. with F(AGUNG1) and F(AGUNG2) the averages over the global radiative forcing of the months 3 to 9 after the eruption ( Figure 5, left). Thus, we overestimate the cooling in AGUNG1 by a factor of 1.1 or 10%. ...
Similar publications
The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA...
We developed a new retrieval algorithm based on the Infrared Atmospheric Sounding Interferometer (IASI) observations, called AEROIASI-Sulphates, to measure vertically-resolved sulphate aerosols (SA) extinction and mass concentration profiles, with limited theoretical uncertainties (typically ~25 % total uncertainty for SA mass column estimations)....
Volcanic sunsets are usually associated with extended and enhanced reddish colours typically complemented by purple colours at higher elevations. However, many eyewitnesses reported remarkably clear and distinct green twilight colours after the eruption of Krakatoa (Sunda Strait, Indonesia) on August 27, 1883. To our best knowledge, no earlier stud...
During an extended volcanic unrest starting in 2017, two main moderate stratospheric eruptions occurred at the Ambae volcano (15°S and 167°E), Vanuatu, in April and July 2018. Observations from a geostationary orbit show that the April and July eruptions injected a volcanic plume into the lower stratosphere. While aerosol enhancements from the Apri...
Abstract. Accurate quantification of the effects of volcanic eruptions on climate is a key requirement for better attribution of anthropogenic climate change. Here we use the UM-UKCA composition-climate model to simulate the atmospheric evolution of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Agung, 1982 E...
Citations
... One key seems to be that climate effects are self-limiting for larger eruptions due to an increase of aerosol growth which reduces peak AOD (English et al., 2013;Pinto et al., 1989;Timmreck et al., 2010). In addition, the role of atmospheric chemistry and OH limitation on sulfuric acid aerosols is continuously under discussion in the literature (Bekki, 1995;Mills et al., 2017;Niemeier et al., 2019;Robock et al., 2009;Timmreck et al., 2003). ...
The super-eruption of Los Chocoyos, newly dated to 80.6 kyrs ago, in Guatemala was one of the largest volcanic events of the past 100 000 years. Recent petrologic data show that the eruption released very large amounts of climate-relevant sulfur and ozone destroying chlorine and bromine gases. Using the recently released Earth System Model CESM2(WACCM6) we simulate the impacts of the sulfur- and halogen-rich Los Chocoyos (~ 15° N) eruption on the pre-industrial Earth System for the eruption month January.
Our model results show that enhanced modeled sulfate burden and aerosol optical depth (AOD) persists for five years, while the volcanic halogens stay elevated for nearly 15 years. As a consequence the eruption leads to a collapse of the ozone layer with global mean column ozone values dropping to 50 DU (80 % decrease) leading to a 550 % increase in surface UV over the first five years with potential impacts on the biosphere. The volcanic eruption shows an asymmetric hemispheric response with enhanced aerosol, ozone, UV, and climate signals over the Northern Hemisphere (NH). Surface climate is impacted globally due to peak AOD of > 6 leading to a maximum surface cooling of > 6 K, precipitation and terrestrial net primary production (NPP) decreases of > 25 %, and sea ice area increases of 40 % in the first three years. Locally, a wetting (> 100 %) and strong increase of NPP (> 700 %) over Northern Africa is simulated in the first five years related to a southwards shift of the Inter-Tropical Convergence Zone to the southern tropics. The ocean responds with El-Niño conditions in the first two years which are masked by the strong volcanic induced surface cooling. Recovery to pre-eruption ozone levels and climate takes 15 and 30 years respectively. The long lasting surface cooling is sustained by sea ice/ocean changes in the Arctic showing an immediate sea ice area increase followed by a decrease of poleward ocean heat transport at 60° N lasting up to 20 years.
In contrast, when simulating Los Chocoyos conventionally, including sulfur and neglecting halogens, we simulate larger sulfate burden and AOD, more pronounced surface climate changes and an increase of column ozone. Comparing our aerosol chemistry ESM results to other super-eruption simulations with aerosol climate models we find a higher surface climate impact per injected sulfur amount than previous studies for our different sets of model experiments, since CESM2(WACCM6) creates smaller aerosols with a longer lifetime partly due to the interactive aerosol chemistry. As the model uncertainties for the climate response to super eruptions are very large observational evidence from paleo archives and a coordinated model intercomparison would help to improve our understanding of the climate and environment response.
... Model results are available under https://cera-www.dkrz.de/WDCC/ui/ cerasearch/entry?acronym=DKRZ_LTA_550_ds00002 Niemeier et al., 2019. Supplement. ...
In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the third largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, which can create a long-lasting stratospheric sulfate layer. The estimated mass flux of the first eruption was about twice as large as the mass flux of the second eruption. We followed the estimated emission profiles and assumed for the first eruption on 17 March an injection rate of 4.7 TgSO2 and 2.3 TgSO2 for the second eruption on 16 May. The injected sulfur forms a sulfate layer in the stratosphere. The evolution of sulfur is nonlinear and depends on the injection rate and aerosol background conditions. We performed ensembles of two model experiments, one with a single eruption and a second one with two eruptions. The two smaller eruptions result in a lower sulfur burden, smaller aerosol particles, and 0.1 to 0.3 Wm-2 (10 %–20 %) lower radiative forcing in monthly mean global average compared to the individual eruption experiment. The differences are the consequence of slightly stronger meridional transport due to different seasons of the eruptions, lower injection height of the second eruption, and the resulting different aerosol evolution.
Overall, the evolution of the volcanic clouds is different in case of two eruptions than with a single eruption only. The differences between the two experiments are significant. We conclude that there is no justification to use one eruption only and both climatic eruptions should be taken into account in future emission datasets.