Table 10 - uploaded by Andrew Adamczyk
Content may be subject to copyright.
Thermodynamic Calculations of Additive 1.

Thermodynamic Calculations of Additive 1.

Source publication
Conference Paper
Full-text available
Automotive OEM requirements for indoor air quality have made volatile organic compounds (VOC) and aldehyde emissions increasingly important to the polyurethane industry. As more OEM’s implement aldehyde emission requirements Air Products’ is actively developing offerings to enable our customers to meet the large range of requirements in different r...

Citations

Article
Full-text available
Flexible polyurethane (PU) materials find extensive use in upholstery, mattresses, and automobiles, yet the molecular background of their odor is still inadequately understood. To address this gap, we aimed at identifying major odorants in fifteen samples representing eight common types of flexible PU materials. The volatiles isolated from the samples were subjected to activity-guided screening via gas chromatography-olfactometry. Structures were assigned by comparing odor, retention data, and mass spectra to those of authentic reference compounds. This approach led to the identification of 50 odorants, 39 of which had not previously been described in PU. The odorants belonged to a wide range of compound classes, including tertiary amines, fatty acid oxidation products, short-chain aldehydes, trioxocanes, pyrazines, aromatic hydrocarbons and heterocycles, chlorinated compounds, phenol derivatives, fragrance compounds, and nitriles. For some odorants, further insights were gained into their origins and release behavior. For example, the odorous 1,4-dimethylpiperazine had been used as a catalyst, and propanal was shown to be not only a PU odorant but also the precursor of an odor-active trioxocane. Additionally, the quantitation of acetaldehyde and propanal suggested their continuous regeneration from the samples. While the sources of other compounds still have to be clarified, the data obtained in this study could pave the way for odor reduction strategies in the production of PU materials, ultimately resulting in an improved odor and consumer experience.