Fig 2 - uploaded by Giorgio Soldani
Content may be subject to copyright.
The virtual simulator project in the Unity game engine editor. 

The virtual simulator project in the Unity game engine editor. 

Source publication
Conference Paper
Full-text available
Recently, minimally invasive cardiothoracic surgery (MICS) has grown in popularity thanks to its advantages over conventional surgery and advancements in surgical robotics. This paper presents a patient-specific virtual surgical simulator for the movability evaluation of single-port MICS robots. This simulator can be used for both the pre-operative...

Context in source publication

Context 1
... virtual simulator was designed to be a standalone desktop application for the Microsoft Windows platform (Fig. 1). We used Blender and Unity as the main tools for the 3D content creation and the software development respectively (Fig. 2). Both tools were chosen because they are cost-effective and technically suitable to implement virtual surgical simulators ...

Similar publications

Article
Full-text available
Background As global use of surgical robotic systems is steadily increasing, surgical simulation can be an excellent way for robotic surgeons to acquire and retain their skills in a safe environment. To address the need for training in less wealthy parts of the world, an affordable surgical robot simulator (PoLaRS) was designed. Methods The aim of...

Citations

... A 3D printer (Dimension Elite 3D Printer, with a building volume of 203 × 203 × 305 mm, and a maximum resolution of 0.178 mm) is used to turn the 3D CAD models into tangible 3D synthetic replicas made of acrylonitrile butadiene styrene (ABS). This plastic is commonly used for the manufacturing of bone replicas for orthopaedic surgery simulation, since it quite realistically replicates the mechanical behaviour of the natural tissue [32]. The anatomical parts to be printed are selected each time according to the specific surgical case: the design of the simulator requires the selection of the anatomical parts to be manipulated (those that can provide haptic feedback useful for the comprehensive understanding of the surgical case) and the parts that can be simply visualised in AR. ...
Article
Full-text available
Cryosurgery is a technique of growing popularity involving tissue ablation under controlled freezing. Technological advancement of devices along with surgical technique improvements have turned cryosurgery from an experimental to an established option for treating several diseases. However, cryosurgery is still limited by inaccurate planning based primarily on 2D visualization of the patient’s preoperative images. Several works have been aimed at modelling cryoablation through heat transfer simulations; however, most software applications do not meet some key requirements for clinical routine use, such as high computational speed and user-friendliness. This work aims to develop an intuitive platform for anatomical understanding and pre-operative planning by integrating the information content of radiological images and cryoprobe specifications either in a 3D virtual environment (desktop application) or in a hybrid simulator, which exploits the potential of the 3D printing and augmented reality functionalities of Microsoft HoloLens. The proposed platform was preliminarily validated for the retrospective planning/simulation of two surgical cases. Results suggest that the platform is easy and quick to learn and could be used in clinical practice to improve anatomical understanding, to make surgical planning easier than the traditional method, and to strengthen the memorization of surgical planning.
... The selected anatomy offered a complicated configuration, which would not allow a manual operation in mini-thoracotomy. The stack of medical images was processed using a specific segmentation pipeline developed in VMTK [38], and a tangible replica of the organs was 3D printed in acrylonitrile butadiene styrene (ABS) (rigid anatomical parts) or manufactured via silicone molding (soft tissues). ...
Article
Objective: Aortic valve disease is the most common heart disease in the elderly calling for replacement with an artificial valve. The presented surgical robot aims to provide a highly controllable instrument for efficient delivery of an artificial valve by the help of integrated endoscopic vision. Methods: A robot (called ValveTech), intended for minimally-invasive surgery (MIS) and consisting of a flexible cable driven manipulator, a passive arm, and a control unit has been designed and prototyped. The flexible manipulator has several features (e.g. stabilizing flaps, tiny cameras, dexterous introducer and custom cartridge) to help the proper valve placement. It provides 5 degrees of freedom for reaching the operative site via mini-thoracotomy; it adjusts the valve and expands it at the optimal position. The robot was evaluated by ten cardiac surgeons following a real surgical scenario in artificial chest simulator with an aortic mockup. Moreover, after each delivery, the expanded valve was evaluated objectively in comparison with the ideal position. Results: The robot performances were evaluated positively by surgeons. The trials resulted in faster delivery and an average misalignment distance of 3.8 mm along the aorta axis; 16.3 degrees rotational angle around aorta axis and 8.8 degrees misalignment of the valve commissure plane to the ideal plane were measured. Conclusion: The trials successfully proved the proposed system for valve delivery under endoscopic vision. Significance: The ValveTech robot can be an alternative solution for minimally invasive aortic valve surgery and improve the quality of the operation both for surgeons and patients.
... The EndoCAS Segmentation Pipeline [27], a semi-automatic segmentation tool integrated into the open-source software ITK-SNAP, was used to process the generated DICOM (Digital Imaging and COmmunications in Medicine) dataset. Then, artifacts removal and mesh smoothing stages were performed [28] to optimize the vascular 3D model. Finally, a 3D printer, Objet30Prime (Stratasys, Los Angeles, CA, USA), was used to fabricate a transparent tangible 3D synthetic vascular model (Fig. 5b). ...
Article
Full-text available
Objective: This work aims at providing novel endovascular instrumentation to overcome current technical limitations of in situ endograft fenestration including challenges in targeting the fenestration site under fluoroscopic control and supplying mechanical support during endograft perforation. Technology: Novel electromagnetically trackable instruments were developed to facilitate the navigation of the fenestration device and its stabilization at the target site. In vitro trials were performed to preliminary evaluate the proposed instrumentation for the antegrade in situ fenestration of an aortic endograft, using a laser guidewire designed ad hoc and the sharp-end of a commercial endovascular guidewire. Results: In situ fenestration was successfully performed in 22 trials. A total of two laser tools were employed since an over-bending of laser guidewire tip, due to its manufacturing, caused the damage of the sensor in the first device used. Conclusions: Preliminary in vitro trials demonstrate the feasibility of the proposed instrumentation which could widespread the procedure for in situ fenestration. The results obtained should be validated performing animal studies. Clinical Impact: The proposed instrumentation has the potential to expand indications for standard endovascular aneurysm repair to cases of acute syndromes.
... rough robotics, further benefits can be reached in terms of telemanipulation, motion scaling, and even smaller incisions [8,9]. Researchers proposed various robotic systems to assist heart surgery [10], allowing in some cases the preoperative planning to test the surgical case before the actual intervention [11]. ...
... ournal of Healthcare Engineering experienced in the AVR procedure via mini-thoracotomy and mini-sternotomy tested the view modalities. Test was performed by using the simulation setup developed in [11], which includes a patient-specific replica of the rib cage, aortic arch, ascending aorta, and the aortic valve, as shown in Figure 9. e aortic arch is made of ABS, and it is provided with a pin to anchor it to a base, while the ascending aorta and the aortic valve are made of soft silicone for a realistic interaction with surgical instruments with casting technique, as described in [29][30][31]. ...
Article
Full-text available
Aortic valve replacement is the only definitive treatment for aortic stenosis, a highly prevalent condition in elderly population. Minimally invasive surgery brought numerous benefits to this intervention, and robotics recently provided additional improvements in terms of telemanipulation, motion scaling, and smaller incisions. Difficulties in obtaining a clear and wide field of vision is a major challenge in minimally invasive aortic valve surgery: surgeon orientates with difficulty because of lack of direct view and limited spaces. This work focuses on the development of a computer vision methodology, for a three-eyed endoscopic vision system, to ease minimally invasive instrument guidance during aortic valve surgery. Specifically, it presents an efficient image stitching method to improve spatial awareness and overcome the orientation problems which arise when cameras are decentralized with respect to the main axis of the aorta and are nonparallel oriented. The proposed approach was tested for the navigation of an innovative robotic system for minimally invasive valve surgery. Based on the specific geometry of the setup and the intrinsic parameters of the three cameras, we estimate the proper plane-induced homographic transformation that merges the views of the operatory site plane into a single stitched image. To evaluate the deviation from the image correct alignment, we performed quantitative tests by stitching a chessboard pattern. The tests showed a minimum error with respect to the image size of 0.46 ± 0.15% measured at the homography distance of 40 mm and a maximum error of 6.09 ± 0.23% at the maximum offset of 10 mm. Three experienced surgeons in aortic valve replacement by mini-sternotomy and mini-thoracotomy performed experimental tests based on the comparison of navigation and orientation capabilities in a silicone aorta with and without stitched image. The tests showed that the stitched image allows for good orientation and navigation within the aorta, and furthermore, it provides more safety while releasing the valve than driving from the three separate views. The average processing time for the stitching of three views into one image is 12.6 ms, proving that the method is not computationally expensive, thus leaving space for further real-time processing.
... A 3D printer (Dimension Elite 3D Printer) is used to turn the 3D CAD models into tangible 3D synthetic replicas made of acrylonitrile butadiene styrene (ABS). is plastic is commonly used for the manufacturing of bone replicas for orthopaedic surgery simulation since it adequately approximates the mechanical behaviour of the natural tissue [37]. Finally, silicone mixtures and polyurethane materials are used for the manufacturing of the soft parts. ...
Article
Full-text available
Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator.
... For the aneurysmatic patients, the CT images corresponding to the last radiological follow-up available prior to a recommendation for interventional treatment was considered. The volumetric CT datasets were used to reconstruct the 3D surface models for both the groups by using the workflow presented in Ref. [32]. ...
Article
We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. 3D surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mould the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. CFD simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach of RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity index.
... This completes the preparation phase. The mini thoracotomy location can be defined preoperatively using patient specific surgical simulators [25]. The simulator allows moving a virtual replica of the manipulator in the patient virtual anatomy, in order to evaluate the best location of the mini thoracotomy. ...
Conference Paper
Full-text available
Aortic heart valve replacement is a major surgical intervention, traditionally requiring a large thoracotomy. However, current advances in Minimally Invasive Surgery and Surgical Robotics can offer the possibility to perform the intervention through a narrow mini thoracotomy. The presented surgical robot and proposed surgical scenario aims to provide a highly controllable means for efficiently conducting valve replacement by endoscopic vision. The robot, consisting of a series of joints, is a cable actuated manipulator for reaching the operative site and delivering the valve at the required position. The robot is equipped with endoscopic cameras (to find the hinge points) and three stabilizing flaps (to stabilize the manipulator) for guarantying the proper valve placement. The manipulator is validated by experimental results of flaps' force and camera visions in artificial vessels.