Figure - available from: Numerical Algorithms
This content is subject to copyright. Terms and conditions apply.
The real (left) and the imaginary (right) parts of the actual error for the Gaussian rule (full line) and the estimates of these errors obtained by application of the corresponding anti-Gaussian rules on the semicircle (dashed line) in calculation of I(f) for f(z)=iz/(z-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)={\textrm{i} z}/{(z-2)}$$\end{document} and w(z)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(z)=1$$\end{document} for n=4(2)10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4(2)10$$\end{document}
Source publication
Let D+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_+$$\end{document} be defined as D+={z∈C:|z|<1,Imz>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepacka...
Similar publications
We deduce the asymptotic behaviour of a broad class of multiple $q$-orthogonal polynomials as their degree tends to infinity. We achieve this by rephrasing multiple $q$-orthogonal polynomials as part of a solution to a Riemann Hilbert Problem (RHP). In particular, we study multiple $q$-orthogonal polynomials of the first kind (see [12]), which are...