Figure - available from: Ecology and Evolution
This content is subject to copyright. Terms and conditions apply.
The number of tandem, palindromic, dispersed repeats and SSR in plastomes of Actaea purpurea and its relatives. (a) The number of four types of repeats; (b) the number of different SSR types.

The number of tandem, palindromic, dispersed repeats and SSR in plastomes of Actaea purpurea and its relatives. (a) The number of four types of repeats; (b) the number of different SSR types.

Source publication
Article
Full-text available
We have seen an explosive increase of plant plastid genome (plastome) sequences in the last decade, and the view that sequence variation in plastomes is maintained by the mutation‐drift balance has been challenged by new evidence. Although comparative genomic and population‐level studies provided us with evidence for positive evolution of plastid g...

Citations

... and Cimicifuga heracleifolia Kom., are referred as the official sources of Cimicifugae Rhizoma [3]. Except the above cultivars, Actaea purpurea [11], Actaea japonica, Cimicifuga simplex [12] black cohosh [13] and Actaea asiatica Hara [14] are often used as counterfeits or fake products regionally due to its similarity in the plant appearance and efficacy. Although the application of these products may be beneficial for obtaining materials locally and addressing resource shortages. ...
Article
Full-text available
Cimicifugae Rhizoma, generally known as “Sheng Ma” in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-024-00937-7.
Article
Examining the pollination biology of plant species is not only crucial for enhancing our understanding of their reproductive biology, but also essential for elucidating their adaptation and evolutionary history. Here, we investigated the breeding system and pollination biology of two closely related species in Actaea. The flower of A. purpurea is unique in the genus with purple and chartaceous (paper-like) sepals, fewer stamens with yellow anthers and purple filaments. Through three seasons of field observation and exclusion experiments, we determined that A. purpurea was primarily pollinated by a hornet species, Vespa bicolor, which also served as the most efficient pollinator. In contrast, A. japonica was primarily pollinated by large flies. A. purpurea exhibited a significantly higher cumulative nectar volume than A. japonica, which could be a crucial factor attracting V. bicolor. A control experiment further demonstrated that removing the nectar leaf (petal) significantly decreased the visiting frequency of V. bicolor. Breeding system studies revealed that both species were self-compatible, yet they primarily underwent outcrossing in natural habitats. Our study presents a compelling case of possible pollinator shift in A. purpurea accompanied by morphological divergence. A more in-depth investigation of this system would offer crucial insights into the extent to which pollinators are involved in the plant speciation process and whether they contribute to reproductive isolation between closely related species.
Article
Full-text available
Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.
Preprint
Background: Polygonatum Miller is the largest genus in the tribe Polygonateae of Asparagaceae, and the horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have been concerned mainly with the size and gene contents of the plastome, comparative analysis of the plastid genomes of this genus is relatively rare. And there are still some species whose chloroplast genome information has not been reported. Results: In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among which, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154, 565 bp (P. multiflorum) to 156, 028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content, protein-coding genes and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species exceptP. sibiricum, in which the rps19gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were eight remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome illustrated that P. campanulatum with alternate leaves were strongly supported locating in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. Conclusions: This study revealed that the characters of plastomes in Polygonatum and Heteropolygonautm maintained a high similarity. Eight highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonemaand P. verticillatum require further study.