Figure - available from: Geophysical Research Letters
This content is subject to copyright. Terms and conditions apply.
The native range of loblolly pine (shaded area) in the Southeast United States and the locations of the through‐fall reduction and fertilization experiments (green, left). Throughfall reduction troughs (−30%) at the Virginia study site (right). Photo: A. Laviner.
Source publication
Net primary productivity (NPP) and net ecosystem production (NEP) are often used interchangeably, as their difference, heterotrophic respiration (soil heterotrophic CO2 efflux, RSH = NPP−NEP), is assumed a near‐fixed fraction of NPP. Here, we show, using a range‐wide replicated experimental study in loblolly pine (Pinus taeda) plantations that RSH...
Citations
... Global R H emissions from soils are estimated at 53-57 Pg C annually Hu et al. 2021a). Many studies suggest that targeted management practices can reduce C emissions and increase soil C sequestration (Noormets et al. 2021;Ciais et al. 2021). Therefore, understanding impact of land management practices on soil R H is essential for the development of strategies that minimize C losses and optimize soil C retention. ...
As the carbon (C) credit market evolves, incorporating organic matter into soils has emerged as a key strategy in C farming. Soil heterotrophic respiration (RH) plays a pivotal role in maintaining the C balance in terrestrial ecosystems, yet the contrasting impacts of fresh and pyrogenic organic matter applications on soil RH, and associated underlying mechanisms, have not been fully investigated. Through a 2-year field experiment, we investigated how applying maize straw and its derived biochar affect the physical, chemical, and microbial properties of soil in a subtropical Moso bamboo forest. Results showed that straw application increased soil RH, while biochar application suppressed it. Soil RH was correlated positively with β-glucosidase and cellobiohydrolase activities but negatively with RubisCO enzyme activity. Increased soil RH under straw application was linked to the increased β-glucosidase/cellobiohydrolase activities driven by elevated water-soluble organic C and O-alkyl C levels as well as GH48 and cbhI gene abundances, and the decreased RubisCO enzyme activity caused by reduced cbbL gene abundance. Conversely, reduced soil RH under biochar application was linked to reductions in β-glucosidase and cellobiohydrolase activities induced by increased aromatic C and decreased GH48 and cbhI gene levels, and increases in RubisCO enzyme activity driven by higher cbbL gene abundance. More importantly, changes in soil RH were clearly linked to microbial dynamics. Specifically, increases in the relative abundances of Alphaproteobacteria and Sordariomycetes and decreases in AD3 and Tremellomycetes contributed to the enhanced soil RH under straw application. With biochar application, the reverse effect occurred, ultimately contributing to the reduced soil RH. Our study demonstrates that maize straw application increases while biochar application decreases soil RH in the subtropical forest. These findings reveal that biochar reduced soil RH through changing microbial activity in subtropical forests, providing insight into complex dynamics of soil C cycling in response to diverse interventions.
... Studies carried out over periods longer than one year contain more information regarding changes in soil respiration, under the conditions of intake of residues (Feng et al., 2017;Hemingway et al., 2019;Cîșlariu et al., 2020;Tang et al., 2020;Yasin & Mirici, 2020;Noormets et al., 2021). On the contrary, studies carried out for short periods of time, on different agricultural soils, in a controlled environment are relatively scarce and they highlighted in particular the fact that the ability to store new C in the soil is influenced by the availability of inorganic nutrients. ...
Active C, as a measure of the level of chemical oxidation of organic matter, reflects the carbon available to microorganisms. Soil respiration, as a direct way to estimate edaphic microbial activity, could be a measure of the fluctuations of carbon stocks in soils. To determine the ability of soil respiration to evaluate such fluctuations we used soils with an increased content of organic carbon, constant optimal conditions, to eliminate the disturbing factors, analyzed in a short period of time. The influence of the specific decomposition rates of these soils was assessed by both spot determinations of soil respiration and analyzing the flux of CO2 from ex situ soil samples, under standard experimental conditions, to highlight carbon storage in such soils. Reference data can be accumulated through the analysis of these parameters, which compared with the results of quantitative/qualitative determinations regarding the changes in the content of microbial biomass, the content of fulvic sub-fractions, the fluorescence of dissolved organic material and the evolution of the content of siderophores, could be considered, by their own evolutions, as arguments in sustaining the use of respiration in the efficient estimation of carbon storage evolution in the soils. The analyses of these parameters were carried out in two phases, for comparing initial and final data of experiment (after 30 days). The soils had different levels of the respiration potential between phases. The level of soil respiration was reduced in time between 4.27-14.60%, in each soil. The CO2 flux showed, in time, a continuous decreasing trend in both soils. In the case of Mollic Histic Gleysol (Salinic), the coefficient of determination has the value R2=0.92 for the flux determined in the final phase. The levels of microbial biomass of both soils were increased significantly at the end of the experiment. In the case of Mollic Histic Gleysol (Salinic), microbial biomass increased from 456±23.12 μgC∙g-1 to 514±24.57 μgC∙g-1 soil. The fulvic sub-fractions A-D of both soils revealed significant accumulates of soluble organic compounds, with different molecular weights and complexity levels, after 30 days of incubations in standard conditions. The fluorescent components present in the water-extractable organic matter were highlighted by imagistic method. The highest degree of storages of newly bio-synthesized compounds of carbon was registered in organic matter of Mollic Histic Gleysol (Salinic). The intensity of siderophores biosynthesis increased over time, starting from an initial lower presence in the Mollic Gleysol (Salinic) (with Ø 11 mm halo), which were followed by an increasing of siderophores content and availability of iron, at the end of the experimental period. Accumulations of siderophores in the Mollic Histic Gleysol (Salinic) determined a Ø 31 mm halo diameter.
... The stabilization of SOC is interlinked with the nutritional supply and turnover, and plant-decomposer competition in the ecosystem (Averill et al. 2014;Noormets et al. 2021). The main mitigation effect of tree plantations on climate change is therefore associated with the maintenance of high productivity rates (Weih 2004;Tullus et al. 2013;Lutter et al. 2021a). ...
Purpose
Fast-growing tree plantations on abandoned agricultural soils is a promising management system to sequester atmospheric CO2. However, the effects of fast-growing trees on the nutritional and organic carbon (SOC) status of soils degraded by agriculture, are poorly understood.
Methods
We sampled the soil after 20 years in 10 silver birch plantations on former agricultural soils in hemiboreal Estonia to assess changes in soil chemical properties (SOC, N, C:N ratio, pHKCl, P, and K) in 10-cm vertical mineral soil layers to a depth of 30 cm and to determine the potential environmental drivers of plant-soil interactions.
Results
We observed no depletion of SOC or macronutrients in the upper 0–30-cm soil layer, but found some vertical shifts among the sublayers. The SOC concentration increased by 22% in the upper 0–10-cm soil layer, especially in sites with higher aboveground productivity. Simultaneously, SOC concentration decreased by 17% in the 20–30-cm soil sublayer, which indicating trees’ ability to alter decomposition activity in deeper vertical soil layers. In the 20–30-cm sublayer, SOC mineralization was supported by an 11% decrease in the C:N ratio. Similarly, the total N concentration increased in the 0–10-cm soil layer by 13%. The concentration of plant-available P increased by ~ 30% in the 20–30-cm sublayer.
Conclusion
Two decades of afforestation of former agricultural soils caused vertical stratification of SOC in the upper mineral soil layer (0–30 cm) where trees can access deeper nutrient pools for active cycling, but caused no loss of SOC or nutrients.
... The net primary production (NPP) was calculated to represent the net accumulation of organic material generated via photosynthesis. NPP is defined as the amount of total organic material minus the loss of material caused by plant respiration [58]. As shown in Section 2.3.1, the net growth (i.e., living biomass) in the model was defined as the production of photosynthesis minus the loss due to respiration and mortality. ...
Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.
The phenological cycles of terrestrial ecosystems have shifted with the changing climate, and the altered timings of biogeochemical fluxes may also exert feedback on the climate system. As regulators of land carbon balance, relative shifts in photosynthetic and respiratory phenology under climate change are of great importance. However, the relative seasonal dynamics of these individual processes and their sensitivity to climate factors as well as the implications for carbon cycling are not well understood. In this study, we examined the relationship in the seasonality of gross primary production (GPP) and ecosystem respiration (RE) as well as their temperature sensitivities and the implications for carbon uptake with around 1500 site-years’ of data from FLUXNET 2015 and Boreal Ecosystem Productivity Simulator (BEPS) at 212 sites. The results showed that RE started earlier in the spring and ended later in the autumn than GPP over most biomes. Furthermore, the flux phenology metrics responded differently to temperature: GPP phenology was more sensitive to changes during the spring temperature than RE phenology, and less sensitive to autumn temperature than RE. We found large BEPS-observation discrepancies in seasonality metrics and their apparent temperature sensitivity. The site-based BEPS projections did not capture the observed seasonal metrics and temperature sensitivities in either GPP or RE seasonality metrics. Improved understanding of the asynchrony of GPP and RE as well as different sensitivity of environmental factors are of great significance for reliable future carbon balance projections.
Net ecosystem productivity (NEP) is a crucial parameter for assessing the carbon cycle dynamics in terrestrial ecosystems. This study analyzed the spatial and temporal evolution characteristics and future trends of NEP in Henan Province over the past 20 years based on MOD17A3HGF, meteorological, and land-use data, employing the frequency counting method, trend test, Hurst index, and the center of gravity model. Various areas of changes in vegetation carbon sequestration were explored, and the driving factors were quantitatively assessed through correlation analysis, Sankey diagrams, and Geodetector. The results demonstrate that: 1) Continuous temporal changes in NEP in Henan, with annual average values fluctuating between 272.84 and 451.39 gC·m⁻²·a¹, exhibiting an overall upward trend. 2) Spatially, there is a distinct distribution of NEP, concentrating more in the south and less in the north. While the study area generally experiences a dominant gradual enhancement of vegetation carbon sequestration capacity, the middle and north of Zhengzhou City exhibit a significant decline, which is expected to persist in the future. The migration of the centers of gravity of NEP over the past 20 years is characterized by stage-specific differentiation. 3) Among the various land cover types, forests have the strongest carbon sequestration capacity; however, cropland emerges as the province’s main source of NEP due to its extensive size. 4) The driving factors for spatial differentiation in NEP exhibit some temporal variability. Overall, climate factors and atmospheric pollution exert stronger influences, with the interactive explanatory power of the two-factor interaction being higher than that of the single factor. The results of this study can serve as a scientific theoretical basis for ecological policy-making and sustainable development in Henan Province.
Evapotranspiration (ET), as a key eco-hydrological parameter, plays an important role in understanding sustainable ecosystem development. Each plant category has a unique functional trait on transpiration and photosynthesis, with ET implying that water cycle and energy transformation is linked with vegetation type. Changes in surface vegetation directly alter biophysical land surface properties, hence affecting energy and ET transfer. With the rapid increase in land surface changes, there is a need to further understand and quantify the effects of vegetation change on ET, especially over the vulnerable water-cycle region in the arid and semi-arid regions of Northwest China. We adopted the GlobalLand30 land cover and MOD16A2 in 2010 and 2020 to investigate, discuss the spatio-temporal characteristics of annual and seasonal ET of cultivated land, grassland, and forests in Northwest China, and quantify the impact on vegetation changes with absolute and relative changes from different climatic subecoregions on ET. Our results show the following: (1) Forest ET was generally the highest at 688 mm, followed by cultivated land and grassland with 200–400 mm in arid climatic subecoregions. (2) Returning cultivated land to forests and cultivated land expansion potentially enhances ET by 90–110 mm/10a, with the relative rate of change increasing by 22.1% and 45.8%, respectively, away from unchanged vegetation within identical subecoregions. (3) The ET of most investigated areas gains the highest value in summer, followed by spring, autumn, and winter. This study provides reference for sustainable ecosystem development and the reasonable utilization of limited water resources in Northwest China.