Figure - available from: Advanced Materials
This content is subject to copyright. Terms and conditions apply.
The impact of NNO on the electrode–electrolyte interface and associated perspective on presodiation agent. a) TOF‐SIMS characterization of pure NVP and NVP‐NNO cycled cathode electrodes after 150 cycles. The normalized depth profiles of the interface and bulk fragments illustrate the structure of CEI. b) 3D renderings of selected secondary ion fragments of different CEI. The sputtered volume is 100 µm (length) × 100 µm (width) × 150 nm (height). c) TEM images of NVP‐NNP after 200 cycles. The IFFT results for the surface and bulk regions are also listed in the figure. The light green‐dashed ground state region is identified as NVP structure, white is defined as carbon layer region, and yellow is assessed as a CEI architecture. d) Scheme of CEI formation and changes on NVP and NVP‐NNO cathodes summarized from characterization data in FEC‐containing electrolytes. e) Perspectives for cathode presodiation agent.

The impact of NNO on the electrode–electrolyte interface and associated perspective on presodiation agent. a) TOF‐SIMS characterization of pure NVP and NVP‐NNO cycled cathode electrodes after 150 cycles. The normalized depth profiles of the interface and bulk fragments illustrate the structure of CEI. b) 3D renderings of selected secondary ion fragments of different CEI. The sputtered volume is 100 µm (length) × 100 µm (width) × 150 nm (height). c) TEM images of NVP‐NNP after 200 cycles. The IFFT results for the surface and bulk regions are also listed in the figure. The light green‐dashed ground state region is identified as NVP structure, white is defined as carbon layer region, and yellow is assessed as a CEI architecture. d) Scheme of CEI formation and changes on NVP and NVP‐NNO cathodes summarized from characterization data in FEC‐containing electrolytes. e) Perspectives for cathode presodiation agent.

Source publication
Article
Full-text available
Compensating for the irreversible loss of limited active sodium (Na) is crucial for enhancing the energy density of practical sodium‐ion batteries (SIBs) full‐cell, especially when employing hard carbon anode with initially lower coulombic efficiency. Introducing sacrificial cathode presodiation agents, particularly those that own potential anionic...

Similar publications

Article
Full-text available
In order to improve the specific capacity of intercalation electrodes for sodium-ion batteries, it is necessary to identify materials capable of storing Na⁺ ions by activating multi-electron redox reactions. Herein, we report a NaFeVPO4(SO4)2 compound as a multi-electron electrode that combines the most abundant Fe and V ions, having multiple oxida...

Citations

Article
More and more basic practical application scenarios have been gradually ignored/disregarded, in fundamental research on rechargeable batteries, e.g. assessing cycle life under various depths‐of‐discharge (DODs). Herein, although benefit from the additional energy density introduced by anionic redox, we critically revealed that lithium‐rich layered oxide (LRLO) cathodes present anomalously poor capacity retention at low‐DOD cycling, which is essentially different from typical layered cathodes (e.g. NCM), and pose a formidable impediment to the practical application of LRLO. We systemically demonstrated that DOD‐dependent capacity decay is induced by the anionic redox and accumulation of oxidized lattice oxygen (On‐). Upon low‐DOD cycling, the accumulation of On‐ and the persistent presence of vacancies in the transition metal (TM) layer intensified the in‐plane migration of TM, exacerbating the expansion of vacancy clusters, which further facilitated detrimental out‐of‐plane TM migration. As a result, the aggravated structural degradation of LRLO at low‐DOD impeded reversible Li+ intercalation, resulting in rapid capacity decay. Furthermore, prolonged accumulation of On‐ persistently corroded the electrode‐electrolyte interface, especially negative for pouch‐type full‐cells with the shuttle effect. Once the “double‐edged sword” effect of anionic redox being elucidated under practical condition, corresponding modification strategies/routes would become distinct for accelerating the practical application of LRLO.
Article
Full-text available
More and more basic practical application scenarios have been gradually ignored/disregarded, in fundamental research on rechargeable batteries, e.g. assessing cycle life under various depths‐of‐discharge (DODs). Herein, although benefit from the additional energy density introduced by anionic redox, we critically revealed that lithium‐rich layered oxide (LRLO) cathodes present anomalously poor capacity retention at low‐DOD cycling, which is essentially different from typical layered cathodes (e.g. NCM), and pose a formidable impediment to the practical application of LRLO. We systemically demonstrated that DOD‐dependent capacity decay is induced by the anionic redox and accumulation of oxidized lattice oxygen (Oⁿ⁻). Upon low‐DOD cycling, the accumulation of Oⁿ⁻ and the persistent presence of vacancies in the transition metal (TM) layer intensified the in‐plane migration of TM, exacerbating the expansion of vacancy clusters, which further facilitated detrimental out‐of‐plane TM migration. As a result, the aggravated structural degradation of LRLO at low‐DOD impeded reversible Li⁺ intercalation, resulting in rapid capacity decay. Furthermore, prolonged accumulation of Oⁿ⁻ persistently corroded the electrode‐electrolyte interface, especially negative for pouch‐type full‐cells with the shuttle effect. Once the “double‐edged sword” effect of anionic redox being elucidated under practical condition, corresponding modification strategies/routes would become distinct for accelerating the practical application of LRLO.