Figure - available from: Numerical Algorithms
This content is subject to copyright. Terms and conditions apply.
The contour Cε=[-1+ε,1-ε]∪cε,1∪Γε∪cε,-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varepsilon }=[-1+\varepsilon ,1-\varepsilon ] \cup c_{\varepsilon ,1} \cup \Gamma _{\varepsilon } \cup c_{\varepsilon ,-1}$$\end{document}
Source publication
Let D+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_+$$\end{document} be defined as D+={z∈C:|z|<1,Imz>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepacka...
Similar publications
We deduce the asymptotic behaviour of a broad class of multiple $q$-orthogonal polynomials as their degree tends to infinity. We achieve this by rephrasing multiple $q$-orthogonal polynomials as part of a solution to a Riemann Hilbert Problem (RHP). In particular, we study multiple $q$-orthogonal polynomials of the first kind (see [12]), which are...