Figure - available from: Journal of Statistical Physics
This content is subject to copyright. Terms and conditions apply.
The box V~(x~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{V}(\tilde{x})$$\end{document} contained in the connected component of x~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{x}$$\end{document} on π-1(B(x,β))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{-1}(B(x, \beta ))$$\end{document}, represented here for the two-dimensional case
Source publication
We prove the existence of equilibrium states for partially hyperbolic endomorphisms with one-dimensional center bundle. We also prove, regarding a class of potentials, the uniqueness of such measures for endomorphisms defined on the 2-torus that: have a linear model as a factor; and with the condition that this measure gives zero weight to the set...