Task stimuli. (A) Scenes were designed to have identical dimensions and a similar perspective. (B) Scenes were designed to have two to five different positions where an object could be reasonably placed. Across all scenes, the same general positions were available for object placement. (C) Example of a scene with an object as seen by the participant. No object was present in the scenes for the stimulus validation study.

Task stimuli. (A) Scenes were designed to have identical dimensions and a similar perspective. (B) Scenes were designed to have two to five different positions where an object could be reasonably placed. Across all scenes, the same general positions were available for object placement. (C) Example of a scene with an object as seen by the participant. No object was present in the scenes for the stimulus validation study.

Source publication
Article
Full-text available
There has been considerable focus on investigating age-related memory changes in cognitively healthy older adults, in the absence of neurodegenerative disorders. Previous studies have reported age-related domain-specific changes in older adults, showing increased difficulty encoding and processing object information but minimal to no impairment in...

Contexts in source publication

Context 1
... nonspatial and spatial information, novel stimuli were developed to mimic real-life environments where objects could occur within the environment, more closely resembling animal studies in which rodents experience objects within an environment. A series of scenes were designed to have the same perspective, spatial dimensions and outdoor scenery (Fig. 1A). Scenes were classified into five general categories: living room, dining room, kitchen, bedroom, and office rooms to allow for the placement of categorically congruent furniture (Fig. 1B). Critically, within each scene, two to five different positions were defined that an object could logically occupy (Fig. 1C). The scene stimuli were ...
Context 2
... which rodents experience objects within an environment. A series of scenes were designed to have the same perspective, spatial dimensions and outdoor scenery (Fig. 1A). Scenes were classified into five general categories: living room, dining room, kitchen, bedroom, and office rooms to allow for the placement of categorically congruent furniture (Fig. 1B). Critically, within each scene, two to five different positions were defined that an object could logically occupy (Fig. 1C). The scene stimuli were first validated using mnemonic ratings and subsequently used in a novel object-in-context task to assess memory for object identity and object position in context and examine age-related ...
Context 3
... dimensions and outdoor scenery (Fig. 1A). Scenes were classified into five general categories: living room, dining room, kitchen, bedroom, and office rooms to allow for the placement of categorically congruent furniture (Fig. 1B). Critically, within each scene, two to five different positions were defined that an object could logically occupy (Fig. 1C). The scene stimuli were first validated using mnemonic ratings and subsequently used in a novel object-in-context task to assess memory for object identity and object position in context and examine age-related changes in performance on this task in cognitively normal older adults compared with young ...

Citations

... These findings support the idea that the elderly recruit alternative neuronal networks to perform in spatial-associated tasks. Nonetheless, these deficits seem to be selective, as aged adults show difficulties in distinguishing the location of objects in space, but retain the ability to recognize the objects presented 129 . Altogether many of these tasks that were initially designed and developed for rodent models, have analogues for use in the human clinical setting, the main exception being the Barnes Maze. ...
Article
Full-text available
As life expectancy continues to increase worldwide, age-related dysfunction will largely impact our societies in the future. Aging is well established to promote the deterioration of cognitive function and is the primary risk factor for the development of prevalent neurological disorders. Even in the absence of dementia, age-related cognitive decline impacts specific types of memories and brain structures in humans and animal models. Despite this, preclinical and clinical studies that investigate age-related changes in brain physiology often use largely different methods, which hinders the translational potential of findings. This review seeks to integrate what is known about age-related changes in the brain with analogue cognitive tests used in humans and rodent studies, ranging from “pen and paper” tests to virtual-reality-based paradigms. Finally, we draw parallels between the behavior paradigms used in research compared to the enrollment into clinical trials that aim to study age-related cognitive decline.
... For example, the perception of reachable space surrounding the body can be extended, or "remapped," following motor training with a real tool, but the same does not happen after motor training with a virtual reality tool (Ferroni et al., 2022). The effect of realness on memory advances various translational predictions, including that real objects may be preferable to pictures for facilitating learning and memory in the classroom (Strouse & Ganea, 2021), for maximizing sensitivity in neuropsychological evaluations (Beaucage et al., 2020;Hampstead et al., 2010), and perhaps for facilitating performance in individuals for whom memory function is disrupted due to brain injury (Sirigu et al., 1991), developmental disorder (Humphreys & Riddoch, 1999), natural aging (Tran et al., 2021), or neurodegenerative conditions (Clemenson & Stark, 2015). Our protocols demonstrate how real-world stimuli can be used in experimental contexts to maximize ecological validity without sacrificing experimental control (Romero & Snow, 2019). ...
Article
Full-text available
In experimental psychology and neuroscience, computerized image stimuli are typically used as artificial proxies for real-world objects to understand brain and behavior. Here, in a series of five experiments (n = 165), we studied human memory for objects presented as tangible solids versus computerized images. We found that recall for solids was superior to images, both immediately after learning, and after a 24-hr delay. A “realness advantage” was also evident relative to three-dimensional (3-D) stereoscopic images, and when solids were viewed monocularly, arguing against explanations based on the presence of binocular depth cues in the stimulus. Critically, memory for solids was modulated by physical distance, with superior recall for objects positioned within versus outside of observers’ reach, whereas recall for images was unaffected by distance. We conclude that solids are processed quantitatively and qualitatively differently in episodic memory than are images, suggesting caution in assuming that artifice can always substitute for reality.
Article
Full-text available
Aging results in less detailed memories, reflecting reduced fidelity of remembered compared to real-world representations. We tested whether poorer representational fidelity across perception, short-term memory (STM), and long-term memory (LTM) are among the earliest signs of cognitive aging. Our paradigm probed target–lure object mnemonic discrimination and precision of object-location binding. Across the lifespan, cognitive deficits were observed in midlife when detailed stimulus representations were required for perceptual and short/long-term forced choice mnemonic discrimination. A continuous metric of object-location source memory combined with computational modeling demonstrated that errors in STM and LTM in middle-aged adults were largely driven by a loss of precision for retrieved memories, not necessarily by forgetting. On a trial-by-trial basis, fidelity of item and spatial information was more tightly bound in LTM compared to STM with this association being unaffected by age. Standard neuropsychological tests without demands on memory quality (digit span, verbal learning) were less sensitive to age effects than STM and LTM precision. Perceptual discrimination predicted mnemonic discrimination. Neuropsychological proxies for prefrontal executive functions correlated with STM, but not LTM fidelity. Conversely, neuropsychological indicators of hippocampal integrity correlated with mnemonic discrimination and precision of both STM and LTM, suggesting partially dissociable mechanisms of interindividual variability in STM and LTM fidelity. These findings suggest that reduced representational fidelity is a hallmark of cognitive aging across perception, STM, and LTM and can be observed from midlife onward. Continuous memory precision tasks may be promising for the early detection of subtle age-related cognitive decline.
Article
Full-text available
Introduction The accumulation of neurofibrillary tau tangles, a neuropathological hallmark of Alzheimer’s disease (AD), occurs in medial temporal lobe (MTL) regions early in the disease process, with some of the earliest deposits localized to subregions of the entorhinal cortex. Although functional specialization of entorhinal cortex subregions has been reported, few studies have considered functional associations with localized tau accumulation. Methods In this study, stepwise linear regressions were used to examine the contributions of regional tau burden in specific MTL subregions, as measured by ¹⁸ F-MK6240 PET, to individual variability in cognition. Dependent measures of interest included the Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini Mental State Examination (MMSE), and composite scores of delayed episodic memory and language. Other model variables included age, sex, education, APOE4 status, and global amyloid burden, indexed by ¹¹ C-PiB. Results Tau burden in right Brodmann area 35 (BA35), left and right Brodmann area 36 (BA36), and age each uniquely contributed to the proportion of explained variance in CDR-SB scores, while right BA36 and age were also significant predictors of MMSE scores, and right BA36 was significantly associated with delayed episodic memory performance. Tau burden in both left and right BA36, along with education, uniquely contributed to the proportion of explained variance in language composite scores. Importantly, the addition of more inclusive ROIs, encompassing less granular segmentation of the entorhinal cortex, did not significantly contribute to explained variance in cognition across any of the models. Discussion These findings suggest that the ability to quantify tau burden in more refined MTL subregions may better account for individual differences in cognition, which may improve the identification of non-demented older adults who are on a trajectory of decline due to AD.
Article
Associative memory deficits in aging are frequently characterized by false recognition of novel stimulus associations, particularly when stimuli are similar. Introducing distinctive stimuli, therefore, can help guide item differentiation in memory and can further our understanding of how age-related brain changes impact behavior. How older adults use different types of distinctive information to distinguish overlapping events in memory and to avoid false associative recognition is still unknown. To test this, we manipulated the distinctiveness of items from two stimulus categories, scenes and objects, across three conditions: (1) distinct scenes paired with similar objects, (2) similar scenes paired with distinct objects, and (3) similar scenes paired with similar objects. Young and older adults studied scene-object pairs and then made both remember/know judgments toward single items as well as associative memory judgments to old and novel scene-object pairs (“Were these paired together?”). Older adults showed intact single item recognition of scenes and objects, regardless of whether those objects and scenes were similar or distinct. In contrast, relative to younger adults, older adults showed elevated false recognition for scene-object pairs, even when the scenes were distinct. These age-related associative memory deficits, however, disappeared if the pair contained an object that was visually distinct. In line with neural evidence that hippocampal functioning and scene processing decline with age, these results suggest that older adults can rely on memory for distinct objects, but not for distinct scenes, to distinguish between memories with overlapping features.
Article
The entorhinal cortex is the site of some of the earliest pathological changes in Alzheimer's disease, including neuronal, synaptic and volumetric loss. Specifically, the lateral entorhinal cortex shows significant accumulation of tau neurofibrillary tangles in the amnestic mild cognitive impairment (aMCI) phase of Alzheimer's disease. Although decreased entorhinal cortex activation has been observed in patients with aMCI in the context of impaired memory function, it remains unclear if functional changes in the entorhinal cortex can be localized to the lateral or medial entorhinal cortex. To assess subregion specific changes in the lateral and medial entorhinal cortex, patients with aMCI and healthy aged-matched control participants underwent high-resolution structural and functional magnetic resonance imaging. Patients with aMCI showed significantly reduced volume, and decreased activation localized to the lateral entorhinal cortex but not the medial entorhinal cortex. These results show that structural and functional changes associated with impaired memory function differentially engage the lateral entorhinal cortex in patients with aMCI, consistent with the locus of early disease related pathology.