Figure - available from: Climate Dynamics
This content is subject to copyright. Terms and conditions apply.
Spatial distributions of daily precipitation detection capabilities of SPPs in mainland China, including average performance of all products; CMD outperforms other products. (a), (d), and (g) are spatial distributions of POD, FAR, and CSI for CMD, respectively. (b), (e), and (h) are spatial distributions of POD, FAR, and CSI for the average performance of SPPs, respectively. (c), (f), and (i) are the spatial distributions of POD, FAR, and CSI for the standard deviation of SPPs, respectively
Source publication
High-quality satellite precipitation products (SPPs) are needed for hydrological simulations and water resource management, especially in remote regions where rain gauges are scarce, therefore the comprehensive evaluation of SPPs is critical. In this study, an improved rank score (RS) method was used to comprehensively and quantitatively evaluate t...
Similar publications
Predicting future climate requires the integration of knowledge and expertise from a wide range of disciplines. Predictions must account for climate-change mitigation policies which may depend on climate predictions. This interdependency, or “circularity”, means that climate predictions must be conditioned on emissions of greenhouse gases (GHGs). L...
Citations
... The IMERG (Integrated Multi-satellite Retrievals for GPM) algorithm synthesizes data from all 161 passive microwave instruments onboard GPM satellites to provide precise rainfall estimations 162 (Chen et al., 2023). Zhu and Liu (2024) found that IMERG data in the mid-latitude region of 163 ...
... China performs optimally among similar datasets (Zhu and Liu, 2024). Therefore, this study uses 164 IMERG data for rainfall calculation of regional runoff after evaluating the determination law from 165 the in-situ data of the nearest hydrological station. ...
Study Region: Endorheic and exorheic basins of the Tibetan Plateau (TP). Study Focus: Reanalysis and satellite precipitation products provide alternatives for regions of sparse ground precipitation observation, but pose a tough task to select a suitable one for the TP. This study conducts a multi-scale evaluation of six reanalysis and satellite precipitation products in endorheic and exorheic basins using water balance and extended triple collocation (ETC) methods. The reanalysis precipitation products include ECMWF Re-Analysis version 5 (ERA5-Land), China Meteorological Forcing Dataset (CMFD), Global Land Data Assimilation Systems (GLDAS), and High-resolution Precipitation dataset for the Third Pole region (TPHiPr). The satellite precipitation data include Global Precipitation Measurements (GPM) and Tropical Rainfall Measuring Mission (TRMM) products. New Hydrological Insights for the Region: The precipitation products vary in accuracy from basin to basin, with better performance in exorheic than endorheic basins. Reanalysis-based ERA5-land, TPHiPr, and CMFD perform well in most basins at annual scale, among which TPHiPr performs best at daily scale. At regional scale, GPM performs well in endorheic region, and ERA5-land in exorheic region. While all the products increase significantly in accuracy from basin to regional scale in endorheic region, ERA5-land shows best performance at annual and multi-year scales in the entire region. Our findings provide valuable supports for precipitation product selection in the Tibetan endorheic and exorheic basins.
O objetivo deste estudo foi avaliar o desempenho de estimadores de precipitação em relação aos dados observados por pluviômetros no leste da Amazônia, abrangendo os estados do Pará, Tocantins e Maranhão no período de janeiro de 2017 a dezembro de 2021. Como referência, foram utilizados dados de precipitação provenientes da Agência Nacional de Águas, do Instituto Nacional de Meteorologia e do Instituto Tecnológico Vale, compondo ao todo 14 postos de medida. As estimativas de precipitação avaliadas foram provenientes dos produtos CHIRPS, CMORPH-HR, CMORPH-BLD, ERA5 e GSMAP, em uma resolução espacial de 0,25° de latitude e longitude. Foram calculadas as médias diária, mensal e anual para comparação subjetiva; e os coeficientes de Nash-Sutcliffe, coeficiente de exatidão, e correlação de Pearson, índice de desempenho e BIAS, para uma análise objetiva. Os resultados mostraram que a maioria dos estimadores subestimaram a precipitação, exceto o CHIRPS. Foi observado que na média mensal a precipitação apresentou melhores estimativas no período seco. Sendo o CMORPH-BLD entre os produtos que apresentou o melhor desempenho baseado nos índices. As diferenças encontradas entre as estimativas de precipitação mostram a importância de avaliações deste tipo, de forma que podem permitir a escolha das estimativas mais adequadas e de forma mais criteriosa em caso de ausência ou falha no conjunto de dados. A topografia e a proximidade do litoral podem ter sido fatores que influenciaram na acurácia das estimativas de precipitação no leste da Amazônia.