Figure 1 - uploaded by Ryszard S Romaniuk
Content may be subject to copyright.
Simplified schematic view of the CMS Data Acquisition System architecture. Shown are the key building blocks for a single slice of the DAQ system.  

Simplified schematic view of the CMS Data Acquisition System architecture. Shown are the key building blocks for a single slice of the DAQ system.  

Source publication
Article
Full-text available
Compact Muon Solenoid at LHC; The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magn...

Similar publications

Article
Full-text available
Compact Muon Solenoid at LHC; The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magn...
Article
Full-text available
Fast and efficient methods for the calibration and the alignment of the detector are a key asset to exploit the physics potential of the Compact Muon Solenoid (CMS) detector and to ensure timely preparation of results for conferences and publications. To achieve this goal, the CMS experiment has set up a powerful framework. This includes automated...
Article
Full-text available
Physics analysis at the Compact Muon Solenoid requires both the production of simulated events and processing of the data collected by the experiment. Since the end of the LHC Run-I in 2012, CMS has produced over 20 billion simulated events, from 75 thousand processing requests organised in one hundred different campaigns. These campaigns emulate d...
Article
Full-text available
Compact Muon Solenoid at LHC; The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for...
Article
Full-text available
The physics event reconstruction is one of the biggest challenges for the computing of the LHC experiments. Among the different tasks that computing systems of the CMS experiment performs, the reconstruction takes most of the available CPU resources. The reconstruction time of single collisions varies according to event complexity. Measurements wer...

Citations

... These global runs regularly exercised the full data flow from the data acquisition system at the experimental site to the reconstruction facility at the CERN IT centre (called the Tier-0 centre), followed by the subsequent transfer of the reconstructed data to all seven of the CMS Tier-1 centres and to some selected Tier-2 centres [8]. ...
... The central DQM shifter in the control room uses the CMS-wide DQM services [8], monitoring event data to assess the quality of the data collected during a run. The DQM shifter is responsible for certifying runs for data analysis purposes. ...
... Some datasets were further reduced, selecting for example events enriched in the fraction of cosmic muons pointing to the inner tracking region of the experiment. Further details on the offline processing workflows applied to the CRAFT data are described in ref. [8]. Table 1. ...
Article
Full-text available
Compact Muon Solenoid at LHC; The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities.
... These global runs regularly exercised the full data flow from the data acquisition system at the experimental site to the reconstruction facility at the CERN IT centre (called the Tier-0 centre), followed by the subsequent transfer of the reconstructed data to all seven of the CMS Tier-1 centres and to some selected Tier-2 centres [8] ...
Article
Full-text available
Compact Muon Solenoid at the Large Hadron Collider, CERN Geneva; The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities.
Article
Full-text available
Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area, January 2013, Ryszard S Romaniuk, TIARA jest Europejskim Konsorcjum Techniki Akceleratorowej, prowadzącym projekty badawcze, techniczne, sieciowe i infrastrukturalne. Celem działania konsorcjum TIARA i prowadzonego przez nie ramowego projektu Europejskiego EU FP7 (Test Infrastructure and Akcelerator Research Area) jest integracja krajowych i międzynarodowych akceleratorowych infrastruktur badawczych i rozwojowych w rodzaj pojedynczego, dobrze skoordynowanego, europejskiego obszaru badawczego. Konsorcjum gromadzi wszystkie ośrodki europejskie posiadające dużą infrastrukturę akceleratorową. Pozostałe ośrodki, jak np. uniwersytety, są afiliowane jako członkowie stowarzyszeni. W Polsce koordynatorem projektu TIARA jest Instytut Fizyki Jądrowej PAN w Krakowie, a uczestnikami są laboratoria krajowe zajmujące się różnymi aspektami techniki akceleratorowej np.: IFJ-PAN, AGH, NCBJ w Świerku, Politechnika Warszawska, Politechnika Wrocławska, Politechnika Łódzka. IFJ-PAN jest oficjalnym członkiem konsorcjum TIARA i reprezentuje wszystkie laboratoria zgromadzone w Polskim Konsorcjum TIARA-PL. Członkami TIARA są: CEA-Francja, CERN-Szwajcaria, CIEMAT-Hiszpania, CNRSFrancja, DESY-Niemcy, GSI-Niemcy, IFJ-PAN Kraków (reprezentujący polskie konsorcjum), INFN-Włochy, PSI-Szwajcaria, STFC-Anglia, Uniwersytet Uppsala (reprezentujący konsorcjum nordyckie – Dania, Finlandia, Norwegia, Szwecja).
Article
Full-text available
ELEKTRONIKA, vol.52, no.01/2011, p.94-108; Zaawansowane systemy fotoniczne i elektroniczne WILGA 2010, Advanced photonic and electronic systems WILGA 2010; Photonics Applications and Web Engineering 2010, January Edition; January 2011, Ryszard S Romaniuk,
Article
Full-text available
ELEKTRONIKA, vol54, no.3/2013, p.119-122; International Linear Collider, Międzynarodowy Zderzacz Liniowy; W tej chwili najdłuższym akceleratorem liniowym jest ok. 3 km maszyna w Stanford (SLAC) o energii 50 GeV. Maszyna ILC – Międzynarodowy Zderzacz Liniowy (International Linear Collider) jest jednym z obecnie opracowywanych projektów podwójnego akceleratora liniowego e+e-, o docelowej energii kolizji wiązek elektronowej i pozytronowej ponad 1 TeV. Alternatywnym projek-tem dla ILC jest Cernowska maszyna CLIC o docelowej energii zderzenia leptonów 3 TeV. Maszyna ma stanowić istotne komple-mentarne uzupełnienie dla potencjału badawczego Ceranowskie-go kompleksu badawczego LHC o docelowej energii zderzenia protonów 14 TeV. Wymagana długość maszyny będzie wyno-siła co najmniej 30 km, a niektóre wersje projektu wymieniają ok. 50 km. Nadprzewodzące liniaki ILC będą wykonane w tech-nologii TESLA 1,3 GHz, wykorzystującej mikrofalowe wnęki nad-przewodzące z ultraczystego niobu klasy RRR lub Nb3Sn, o bar-dzo dużej dobroci, pracujące z gradientem przyspieszającym prawdopodobnie ponad 35 MV/m, a niektóre wersje projektu wy-mieniają ograniczenie rzędu 50 MV/m. Zespoły z Polski (Kraków. Warszawa, Wrocław – IFJ-PAN, AGH, UJ, NCBJ, UW, PW, PWr, INT-PAN) uczestniczą w opracowywaniu projektu tej maszyny, de-tektorów, kriogeniki i systemów pomiarowo-kontrolnych. W chwili obecnej wydaje się, że maszyna ILC będzie najprawdopodobniej budowana w Japonii w latach 2016-2026. Jeśli to się spełni, Ja-ponia stanie się trzecią potęgą akceleratorową świata po CERN i USA. W Niemczech, w DESY Hamburg, budowany jest obecnie liniak elektronowy o długości ok. 3 km, który ma stanowić zasila-nie dla rentgenowskiego lasera FEL. Układy sterowania i timingu są projektowane i wytwarzane z udziałem Politechnik Warszaw-skiej i Łódzkiej.
Article
Full-text available
Compact Muon Solenoid at LHC; The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities.
Article
Full-text available
Compact Muon Solenoid at the Large Hadron Collider, CERN Geneva; The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities. CMS@LHC;
Article
Full-text available
ELEKTRONIKA, vol.54, no.3/2013, p.119-122; Międzynarodowy Zderzacz Liniowy; International Linear Collider; W lutym 2013 r. dwa analogiczne, lecz różne technologicznie, projekty ILC (zimny) i CLIC (ciepły) utworzyły wspólne ciało koordynacyjne – Kolaborację (konsorcjum) Zderzacza Liniowego – LCC (Linear Collider Collaboration). CLIC i ILC są dwoma najbardziej zaawansowanymi projektami badawczymi przyszłej fizyki cząsteczkowej. Konsorcjum jest stworzone w celu uzupełnienia eksperymentu z wielkim akceleratorem kołowym LHC. Dlaczego liniaki? Akcelerator kołowy skutecznie przyspiesza cząsteczki o większej masie, jak hadrony. Dla leptonów ograniczeniem jest promieniowanie synchrotronowe. Akcelerator LEP, poprzednik LHC w tym samym tunelu, posiadał ograniczenie ze względu na straty energii na promieniowanie synchrotronowe na poziomie ok. 210 GeV. Promieniowanie synchrotronowe jest odwrotnie proporcjonalne do czwartej potęgi masy przyspieszanych cząsteczek. Mimo, że energia kolizji leptonów (1 TeV) w ILC jest mniejsza niż hadronów w LHC (14 TeV) to pomiary w ILC można dokonać w sposób znacznie bardziej dokładny.
Article
Full-text available
ELEKTRONIKA, vol.52, no. 01/2011, p.94-108; Zaawansowane systemy fotoniczne i elektroniczne WILGA Poland 2010, May 2010, (Advanced photonic and electronic systems); Ryszard S Romaniuk, Photonics Applications and Web Engineering 2010;
Article
Full-text available
TRIDAQ Systems in HEP Experiments at LHC Accelerator, IJET 2013, 59(4), 415-421; The paper describes Trigger and Data Acquisition (TRIDAQ) systems of accelerator experiments for High Energy Physics. The background for physics research comprises assumptions of the Standard Model theory with basic extensions. On this basis, a structure of particle detector system is described, with emphasis on the following functional blocks: Front-End Electronics, Trigger and DAQ systems. The described solutions are used in the LHC experiments: ATLAS, ALICE, CMS and LHCb. They are also used in other accelerator experiments. Data storage and processing functionality is divided into two hardware systems: Trigger and Data Acquisition, that are dependent on each other. High input data rate impose relevant choices for the architecture and parameters of both systems. The key parameters include detailed system structure and its overall latency. Trigger structure is defined by the physics requirements and the storage capability of DAQ system. Both systems are designed to achieve the highest possible space and time resolution for particle detection. Trigger references are reviewed [1]-[39] as well as chosen accelerator research efforts originating in this country [40]-[83].