Figure - available from: Journal of Sensors
This content is subject to copyright. Terms and conditions apply.
Sensors in a smart home environment for cognitive health assessment.

Sensors in a smart home environment for cognitive health assessment.

Source publication
Article
Full-text available
With the prevalence of cognitive diseases, the health industry is facing newer challenges since cognitive health deteriorates gradually over time, and clear signs and symptoms appear when it is too late. Smart homes and the IoT (Internet of Things) have given hope to the health industry to monitor and manage the elderly and the less-abled in the co...

Similar publications

Article
Full-text available
How can a smart home system control a connected device to be in a desired state? Recent developments in the Internet of Things (IoT) technology enable people to control various devices with the smart home system rather than physical contact. Furthermore, smart home systems cooperate with voice assistants such as Bixby or Alexa allowing users to con...
Article
Full-text available
Developments in computer and network technologies have also positively affected internet technology. With the development of the Internet, the concept of IoT (Internet of Things) has been invented. Nowadays, IoT devices provide convenience in many areas, and the positive effects of IoT-based systems increase people's quality of life. People want to...
Article
Full-text available
Dementia is increasing day-by-day in older adults. Many of them are spending their life joyfully due to smart home technologies. Smart homes contain several smart devices which can support living at home. Automated assessment of smart home residents is a significant aspect of smart home technology. Detecting dementia in older adults in the early st...
Article
Full-text available
The massive expansion in the Internet of Things (IoT) deployment has increased the use of the internet, from computers and phones to various other devices in our world. This expansion makes our life easier and industries' work more efficient. However, at the same time, it brought various security challenges and broadened the area of cyber-attacks....

Citations

... This capability facilitates the collection of comprehensive data regarding the health-related activity patterns of users, particularly in relation to their daily activities. 3 In this article, an exercise refers to a subset of physical activity that is planned and executed with a specific goal and has as its ultimate or intermediate goal of improvement or maintenance of exercise. 4,5 The digital health service, through the utilization of real-time situation triggered reminders, pushes, and notifications, can assist the user in improving the effectiveness of daily exercise. ...
Article
Full-text available
Background The utilization of digital health has increased recently, and these services provide extensive guidance to encourage users to exercise frequently by setting daily exercise goals to promote a healthy lifestyle. These comprehensive guides evolved from the consideration of various personalized behavioral factors. Nevertheless, existing approaches frequently neglect the users’ dynamic behavior and the changing in their health conditions. Objective This study aims to fill this gap by developing a machine learning algorithm that dynamically updates auto-suggestion exercise goals using retrospective data and realistic behavior trajectory. Methods We conducted a methodological study by designing a deep reinforcement learning algorithm to evaluate exercise performance, considering fitness-fatigue effects. The deep reinforcement learning algorithm combines deep learning techniques to analyze time series data and infer user's exercise behavior. In addition, we use the asynchronous advantage actor-critic algorithm for reinforcement learning to determine the optimal exercise intensity through exploration and exploitation. The personalized exercise data and biometric data used in this study were collected from publicly available datasets, encompassing walking, sports logs, and running. Results In our study, we conducted the statistical analyses/inferential tests to compare the effectiveness of machine learning approach in exercise goal setting across different exercise goal-setting strategies. The 95% confidence intervals demonstrated the robustness of these findings, emphasizing the superior outcomes of the machine learning approach. Conclusions Our study demonstrates the adaptability of machine learning algorithm to users’ exercise preferences and behaviors in exercise goal setting, emphasizing the substantial influence of goal design on service effectiveness.
... However, some portions, like the iris, may be susceptible to touch and difficult to view despite exposure. Therefore, color imaging is an alternate way of displaying the components for further investigation (Varkarakis et al. 2020;Alsubai et al. 2022). ...
Article
Full-text available
Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.
... The IoMT includes stationary devices such as hospital screens and imaging equipment, implantable cardiac and insulin pumps, and ambient devices such as smart beds and detectors. Together, these devices collect and transmit data, which can be utilized to monitor patients' health, identify ailments, and design personalized treatment plans for them [19][20][21]. With wearable technology, precise and durable data estimation is feasible, and this information can be utilized to estimate different factors of human fitness, such as stress status. ...
... Healthcare is increasingly adopting AI techniques to improve diagnostics, monitoring, and overall patient care. However, the success of AI algorithms heavily relies on the availability of high-quality and diverse datasets [20,[33][34][35]. In the case of stress detection, access to large-scale and labeled datasets is limited, which hinders the development and evaluation of accurate AI models. ...
Article
Full-text available
Contemporary advancements in wearable equipment have generated interest in continuously observing stress utilizing various physiological indicators. Early stress detection can improve healthcare by lessening the negative effects of chronic stress. Machine learning (ML) methodologies have been modified for healthcare equipment to monitor user health situations utilizing sufficient user information. Nevertheless, more data are needed to make applying Artificial Intelligence (AI) methodologies in the medical field easier. This research aimed to detect stress using a stacking model based on machine learning algorithms using chest-based features from the Wearable Stress and Affect Detection (WESAD) dataset. We converted this natural dataset into a convenient format for the suggested model by performing data visualization and preprocessing using the RESP feature and feature analysis using the Z-score, SelectKBest feature, the Synthetic Minority Over-Sampling Technique (SMOTE), and normalization. The efficiency of the proposed model was estimated regarding accuracy, precision, recall, and F1-score. The experimental outcome illustrated the efficacy of the proposed stacking technique, achieving 0.99% accuracy. The results revealed that the proposed stacking methodology performed better than traditional methodologies and previous studies.
... Acquiring data is the most fundamental process in the automation process. Various modes and techniques have been used for data gathering or acquisition, which is further used for cognitive health assessment [219]. Data gathering is crucial in MCI detection. ...
Article
Full-text available
The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing, and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field.
Article
The main cause of stroke is the unexpected blockage of blood flow to the brain. The brain cells die if blood is not supplied to them, resulting in body disability. The timely identification of medical conditions ensures patients receive the necessary treatments and assistance. This early diagnosis plays a crucial role in managing symptoms effectively and enhancing the overall quality of life for individuals affected by the stroke. The research proposed an ensemble machine learning (ML) model that predicts brain stroke while reducing parameters and computational complexity. The dataset was obtained from an open-source website Kaggle and the total number of participants is 3,254. However, this dataset needs a significant class imbalance problem. To address this issue, we utilized Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADAYSN), a technique for oversampling issues. The primary focus of this study centers around developing a stacking and voting approach that exhibits exceptional performance. We propose a stacking ensemble classifier that is more accurate and effective in predicting stroke disease in order to improve the classifier’s performance and minimize overfitting problems. To create a final stronger classifier, the study used three tree-based ML classifiers. Hyperparameters are used to train and fine-tune the random forest (RF), decision tree (DT), and extra tree classifier (ETC), after which they were combined using a stacking classifier and a k-fold cross-validation technique. The effectiveness of this method is verified through the utilization of metrics such as accuracy, precision, recall, and F1-score. In addition, we utilized nine ML classifiers with Hyper-parameter tuning to predict the stroke and compare the effectiveness of Proposed approach with these classifiers. The experimental outcomes demonstrated the superior performance of the stacking classification method compared to other approaches. The stacking method achieved a remarkable accuracy of 100% as well as exceptional F1-score, precision, and recall score. The proposed approach demonstrates a higher rate of accurate predictions compared to previous techniques.