Figure - available from: Journal of Sensors
This content is subject to copyright. Terms and conditions apply.
Source publication
With the prevalence of cognitive diseases, the health industry is facing newer challenges since cognitive health deteriorates gradually over time, and clear signs and symptoms appear when it is too late. Smart homes and the IoT (Internet of Things) have given hope to the health industry to monitor and manage the elderly and the less-abled in the co...
Similar publications
Developments in computer and network technologies have also positively affected internet technology. With the development of the Internet, the concept of IoT (Internet of Things) has been invented. Nowadays, IoT devices provide convenience in many areas, and the positive effects of IoT-based systems increase people's quality of life. People want to...
Citations
... The IoMT includes stationary devices such as hospital screens and imaging equipment, implantable cardiac and insulin pumps, and ambient devices such as smart beds and detectors. Together, these devices collect and transmit data, which can be utilized to monitor patients' health, identify ailments, and design personalized treatment plans for them [19][20][21]. With wearable technology, precise and durable data estimation is feasible, and this information can be utilized to estimate different factors of human fitness, such as stress status. ...
... Healthcare is increasingly adopting AI techniques to improve diagnostics, monitoring, and overall patient care. However, the success of AI algorithms heavily relies on the availability of high-quality and diverse datasets [20,[33][34][35]. In the case of stress detection, access to large-scale and labeled datasets is limited, which hinders the development and evaluation of accurate AI models. ...
Contemporary advancements in wearable equipment have generated interest in continuously observing stress utilizing various physiological indicators. Early stress detection can improve healthcare by lessening the negative effects of chronic stress. Machine learning (ML) methodologies have been modified for healthcare equipment to monitor user health situations utilizing sufficient user information. Nevertheless, more data are needed to make applying Artificial Intelligence (AI) methodologies in the medical field easier. This research aimed to detect stress using a stacking model based on machine learning algorithms using chest-based features from the Wearable Stress and Affect Detection (WESAD) dataset. We converted this natural dataset into a convenient format for the suggested model by performing data visualization and preprocessing using the RESP feature and feature analysis using the Z-score, SelectKBest feature, the Synthetic Minority Over-Sampling Technique (SMOTE), and normalization. The efficiency of the proposed model was estimated regarding accuracy, precision, recall, and F1-score. The experimental outcome illustrated the efficacy of the proposed stacking technique, achieving 0.99% accuracy. The results revealed that the proposed stacking methodology performed better than traditional methodologies and previous studies.
... Acquiring data is the most fundamental process in the automation process. Various modes and techniques have been used for data gathering or acquisition, which is further used for cognitive health assessment [219]. Data gathering is crucial in MCI detection. ...
The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing, and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field.
The main cause of stroke is the unexpected blockage of blood flow to the brain. The brain cells die if blood is not supplied to them, resulting in body disability. The timely identification of medical conditions ensures patients receive the necessary treatments and assistance. This early diagnosis plays a crucial role in managing symptoms effectively and enhancing the overall quality of life for individuals affected by the stroke. The research proposed an ensemble machine learning (ML) model that predicts brain stroke while reducing parameters and computational complexity. The dataset was obtained from an open-source website Kaggle and the total number of participants is 3,254. However, this dataset needs a significant class imbalance problem. To address this issue, we utilized Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADAYSN), a technique for oversampling issues. The primary focus of this study centers around developing a stacking and voting approach that exhibits exceptional performance. We propose a stacking ensemble classifier that is more accurate and effective in predicting stroke disease in order to improve the classifier’s performance and minimize overfitting problems. To create a final stronger classifier, the study used three tree-based ML classifiers. Hyperparameters are used to train and fine-tune the random forest (RF), decision tree (DT), and extra tree classifier (ETC), after which they were combined using a stacking classifier and a k-fold cross-validation technique. The effectiveness of this method is verified through the utilization of metrics such as accuracy, precision, recall, and F1-score. In addition, we utilized nine ML classifiers with Hyper-parameter tuning to predict the stroke and compare the effectiveness of Proposed approach with these classifiers. The experimental outcomes demonstrated the superior performance of the stacking classification method compared to other approaches. The stacking method achieved a remarkable accuracy of 100% as well as exceptional F1-score, precision, and recall score. The proposed approach demonstrates a higher rate of accurate predictions compared to previous techniques.