Figure - uploaded by Tim Repke
Content may be subject to copyright.
Source publication
Language is dynamic and constantly evolving: both the usage context and the meaning of words change over time. Identifying words that acquired new meanings and the point in time at which new word senses emerged is elementary for word sense disambiguation and entity linking in historical texts. For example, cloud once stood mostly for the weather ph...
Similar publications
Natural language processing (NLP) may face the inexplicable “black-box” problem of parameters and unreasonable modeling for lack of embedding of some characteristics of natural language, while the quantum-inspired models based on quantum theory may provide a potential solution. However, the essential prior knowledge and pretrained text features are...
Humans often make creative use of words to express novel senses. A long-standing effort in natural language processing has been focusing on word sense disambiguation (WSD), but little has been explored about how the sense inventory of a word may be extended toward novel meanings. We present a paradigm of word sense extension (WSE) that enables word...
Word Sense Disambiguation (WSD) aims to determine the correct meaning of words that can have multiple interpretations. Recently, contextualized word embeddings, whose goal is to give different representations of the same word in diverse contexts, have been shown to have a tremendous impact on several natural language processing tasks including ques...
We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models' performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven...
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demon...