Figure - uploaded by Gero Hütter
Content may be subject to copyright.
Source publication
Allo-HSCT with CCR5Δ32/Δ32 donor cells is the only curative HIV-1 intervention. We investigated the impact of allo-HSCT on the viral reservoir in PBMCs and post-mortem tissue in two patients. IciS-05 and IciS-11 both received a CCR5Δ32/Δ32 allo-HSCT. Before allo-HSCT, ultrasensitive HIV-1 RNA quantification; HIV-1-DNA quantification; co-receptor tr...
Citations
... But in July 2014, HIV was detected in her body again [40]. Thus, an observation period of at least 30 months after stopping ART is a convincing time point for determining a functional cure; research indicates that after allo-HSCT, the virus is cleared in a tissue-specific and step-by-step manner [73,74]. HIV and the infected cells are first cleared from the peripheral blood, then from the peripheral lymph nodes, and finally from the mesenteric lymph nodes that drain the gastrointestinal tract. ...
Antiretroviral therapy (ART) can effectively suppress the replication of human immunodeficiency virus (HIV), but it cannot completely eradicate the virus. The persistent existence of the HIV reservoir is a major obstacle in the quest for a cure. To date, there have been a total of seven cured cases of HIV worldwide. These patients all cleared HIV while undergoing allogeneic stem cell transplantation (allo-HSCT) for hematological malignancies. However, in these cases, the specific mechanism by which allo-HSCT leads to the eradication of HIV remains unclear, so it is necessary to conduct an in-depth analysis. Due to the difficulty in obtaining donors and the risks associated with transplantation, this treatment method is not applicable to all HIV patients. There is still a need to explore new treatment strategies. In recent years, emerging therapies such as neutralizing antibody immunotherapy, chimeric antigen receptor T cell (CAR-T) therapy, gene editing, and antiviral therapies targeting the reservoir have attracted wide attention due to their ability to effectively inhibit HIV replication. This article first elaborates on the nature of the HIV reservoir, then deeply explores the treatment modalities and potential success factors of HIV cured cases, and finally discusses the current novel treatment methods, hoping to provide comprehensive and feasible strategies for achieving the cure of HIV.
... The intact proviral DNA assay (IPDA) 23 detected potentially intact proviruses in two samples that had been obtained during ART-suppressed viremia 17 and 32 months before allo-HSCT in the context of his participation in the Swiss HIV cohort study (Fig. 2c). By contrast, potentially intact proviruses were never detected following people with HIV who did not achieve full donor chimerism 12,17 or in tissue sanctuaries analyzed in necropsy studies 18 . Moreover, during the weeks following allo-HSCT, a window of vulnerability occurs when highly activated CD4 + T cells from both donor and recipient coexist 19 , thereby increasing the risk of reservoir reseeding if infection of donor cells is not prevented by pharmacological or genetic and host barriers. ...
HIV cure has been reported for five individuals who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) with cells from CCR5Δ32 homozygous donors. By contrast, viral rebound has occurred in other people living with HIV who interrupted antiretroviral treatment after undergoing allo-HSCT, with cells mostly from wild-type CCR5 donors. Here we report the case of a male individual who has achieved durable HIV remission following allo-HSCT with cells from an unrelated HLA-matched (9 of 10 matching for HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 alleles) wild-type CCR5 donor to treat an extramedullary myeloid tumor. To date, plasma viral load has remained undetectable for 32 months after the interruption of antiretroviral treatment. Treatment with ruxolitinib has been maintained during this period to treat chronic graft-versus-host disease. Low levels of proviral DNA were detected sporadically after allo-HSCT, including defective but not intact HIV DNA. No virus could be amplified in cultures of CD4⁺ T cells obtained after antiretroviral treatment interruption, while CD4⁺ T cells remained susceptible to HIV-1 infection in vitro. Declines in HIV antibodies and undetectable HIV-specific T cell responses further corroborate the absence of viral rebound after antiretroviral treatment interruption. These results suggest that HIV remission could be achieved in the context of allo-HSCT with wild-type CCR5.
Purpose of review
Long-lasting HIV remission has been reported in a small group of people with HIV (PWH) following allogenic hematopoietic stem cell transplants (HSCT) for the treatment of hematologic malignancies. While the mechanisms of HIV remission following release from antiretroviral therapy (ART) were not initially known, subsequent findings from clinical cases and preclinical nonhuman primate studies have implicated mechanisms of clearance. Here, we review the six currently published human cases of long-term ART-free HIV remission.
Recent findings
Since the first report of ART-free HIV remission following HSCT, five subsequent cases of HSCT-induced sustained HIV remission have been published. While the pre- and posttransplant treatment conditions vary greatly, all but one received cells from donors homozygous for a 32 bp deletion in the gene that encodes CCR5 ( ccr5Δ32 ), the major HIV coreceptor. Studies in nonhuman primates and the newest published individual suggest that while CCR5 deficiency can protect donor cells from infection early posttransplant, it is not required for long term remission, as ablation of the viral reservoir is likely due to allogeneic immunity mediating a graft-versus-reservoir response.
Summary
Studies of HSCT in PLWH and simian immunodeficiency virus (SIV)-infected monkeys show that those with durable remission are likely cured, demonstrated by complete ablation of the replication-competent HIV reservoir, gradual loss of anti-HIV immunity, and greater than 5 years of aviremia.
https://www.sciencedirect.com/science/article/pii/S2352301824000900?dgcid=coauthor
Erratum to: Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? doi: 10.20411/pai.v8i2.665 In the original publication, the comments provided by Santiago Ávila-Ríos were mistakenly omitted. In this version, his comments are included in the “Comments by Leaders” section, and his name has been included in the list of authors. ---Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the “reservoir” of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS’ 95-95-95 targets) [6–8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a “cure” remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the “reservoir” of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS’ 95-95-95 targets) [6–8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a “cure” remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Previously, two men were cured of HIV-1 through CCR5Δ32 homozygous (CCR5Δ32/Δ32) allogeneic adult stem cell transplant. We report the first remission and possible HIV-1 cure in a mixed-race woman who received a CCR5Δ32/Δ32 haplo-cord transplant (cord blood cells combined with haploidentical stem cells from an adult) to treat acute myeloid leukemia (AML). Peripheral blood chimerism was 100% CCR5Δ32/Δ32 cord blood by week 14 post-transplant and persisted through 4.8 years of follow-up. Immune reconstitution was associated with (1) loss of detectable replication-competent HIV-1 reservoirs, (2) loss of HIV-1-specific immune responses, (3) in vitro resistance to X4 and R5 laboratory variants, including pre-transplant autologous latent reservoir isolates, and (4) 18 months of HIV-1 control with aviremia, off antiretroviral therapy, starting at 37 months post-transplant. CCR5Δ32/Δ32 haplo-cord transplant achieved remission and a possible HIV-1 cure for a person of diverse ancestry, living with HIV-1, who required a stem cell transplant for acute leukemia.