Figure - available from: Scientific Reports
This content is subject to copyright. Terms and conditions apply.
Prunus africana medicinal plant. (a) P. africana tree. (b) Stem of P. africana with part of its bark harvested for medicine purpose. (c) Harvested and dried P. africana stem bark. (d) Pulverized P. africana stem bark.

Prunus africana medicinal plant. (a) P. africana tree. (b) Stem of P. africana with part of its bark harvested for medicine purpose. (c) Harvested and dried P. africana stem bark. (d) Pulverized P. africana stem bark.

Source publication
Article
Full-text available
Abstract Osteoporosis affects millions of people worldwide. As such, this study assessed the macrophage-dependent in vitro anti-osteoporosis, phytochemical profile and hepatotoxicity effects in zebrafish larvae of the stem bark extracts of P. africana. Mouse bone marrow macrophages (BMM) cells were plated in 96-well plates and treated with P. afric...

Citations

... [31,32] Beta-sitosterol can also inhibit macrophage IL-6 activity, reduce the secretion of inflammatory factors such as IL-1, TNF, and play an anti-inflammatory role. [33] It was found that ginsenoside rh2 possesses pharmacological effects such as hypoglycemic, hypolipidemic, antioxidant, and anti-atherosclerotic. Hou et al [34] found that ginsenoside rh2 has the effect of increasing the activity of antioxidant enzymes such as SOD, reducing ROS, and decreasing oxidative stress. In addition, ginsenoside rh2 has anti-inflammatory activity, which can inhibit the release of pro-inflammatory cytokines and inhibit the inflammatory signaling pathway, effectively improving the inflammatory response. ...
Article
Full-text available
Diabetes mellitus (DM) is a chronic metabolic disease that predisposes to chronic damage and dysfunction of various organs, including leading to erectile dysfunction (ED) and asthenospermia. Literature suggests that ginseng plays an important role in the treatment and management of DM. Ginseng may have a therapeutic effect on the complications of DM-induced ED and asthenospermia. The study aimed to explore the mechanisms of ginseng in the treatment of DM-induced ED and asthenospermia following the Traditional Chinese Medicine (TCM) theory of “treating different diseases with the same treatment.” This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of Ginseng for the treatment of DM-induced ED and asthenospermia. The chemical ingredients and targets of ginseng were acquired using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. The targets of DM, ED, and asthenospermia were extracted with the GeneCards and Online Mendelian Inheritance in Man databases. A protein–protein interaction network analysis was constructed. The Metascape platform was applied for analyzing the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways. AutoDock Vina was used to perform molecular docking. Network pharmacology revealed that the main active components of the target of action were kaempferol, beta-sitosterol, ginsenoside rh2, stigmasterol, and fumarine. Core targets of the protein–protein interaction network included TNF, IL-1β, AKT1, PTGS2, BCL2, and JUN. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that they were mainly involved in AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, Lipid and atherosclerosis. The interactions of core active components and targets were analyzed by molecular docking. Ginseng may play a comprehensive therapeutic role in the treatment of DM-induced ED and asthenospermia through “multicomponent, multi-target, and multi-pathway” biological mechanisms such as inflammation and oxidative stress.
... If we compare the diseases identified in this study with those reported by previous research, we can observe a great similarity with local populations using P. africana in other countries. Indeed, a number of ethnobotanical studies have found that not only local populations but also the scientific community are attracted to this species because of its effective active ingredients against benign prostatic hyperplasia and prostate hypertrophy (Abera 2014;Ibrahim et al. 2016;Jared Misonge et al. 2019;Qureshi et al. 2009;Tugume et al. 2016;Komakech and Kang 2019;Komakech et al. 2020;Komakech et al. 2022), an increasingly common problem in older men. Beyond the prostate, our ethnobotanical surveys showed that local people also use P. africana in the treatment of other diseases. ...
Article
Full-text available
Background: Prunus africana (Hook. f) Kalkman (Rosaceae) is a multi-purpose species with important utility value for the populations that depend on it. Indeed, local populations living in community forests use P. africana. The objective of this study is to document the different uses of P. africana by local populations in traditional medicine for a better vulgarization for a sustainable management of the resource. Methods: Ethnobotanical surveys were conducted in four P. africana distribution areas in North Kivu. Data were collected on the basis of a survey from 221 informants. Statistical analysis and calculation of ethnobotanical indices were performed using R 4.1.2 software. Results: Results of the investigations show that P. africana is by far used in medical practices (96.83%). It is also used as wood energy (60.18 %), charcoal (40.27 %), in handicrafts (7.24 %), construction (6.79 %), food (2.26 %) and traditional rites (0.45 %). In traditional pharmacopoeia, the characterization of the uses allowed us to identify 23 diseases for which P. africana extracts are used to treat them. The bark and leaves are the most used organs in the recipes. The decoction (99.5%), the macerated (10.41%) and the powders (7.69%) are the galenic or pharmaceutical forms in which the local populations prepare the remedies. The potions prepared are mainly administered orally (99.5%). Conclusion: The multiple forms of use of P. africana by the populations of North Kivu, both in medicine and in other categories of use, constitute a threat to its survival. For a sustainable management, the results of this study reveal that it is possible to substitute the species P. africana with other plant species with similar potential in order to limit its overexploitation
Article
The stem-bark of Prunus africana (Hook.f.) Kalkman (African cherry) is traditionally used for the treatment of stomach ache, chest pain, malaria, fever, diabetes and high blood pressure. A large number of constituents have been isolated from the stem-bark including β-sitosterol and ursolic acid, which were reported to have anti-inflammatory activity. The aim of the study was to establish chemotypic variation among Prunus africana samples collected from three African countries, Cameroon, Democratic Republic of Congo (DRC) and Zimbabwe. Ninety-five stem-bark samples were collected from a total of nineteen populations, 11 in Cameroon (n = 55), 4 in Democratic Republic of Congo (n = 20) and 4 in Zimbabwe (n = 20). The samples were extracted with ethyl acetate, dichloromethane and methanol (1 g in 10 mL, 1 g in 10 mL and 2 mg in 5 µL, respectively). Chemometric analysis of chromatographic data obtained from high-performance thin layer chromatography (HPTLC), ultra performance liquid chromatography coupled with mass spectrometry (UPLC–MS), one-dimensional gas chromatography-time-of-flight-mass spectrometry (1D GC–ToF–MS) and spectroscopic data obtained from proton nuclear magnetic resonance (1H NMR) were done using MetaboAnalyst 4.0 software to explore chemotypic variation. A sample from each country was analysed by two-dimensional gas chromatography-time-of-flight-mass spectrometry (2D GC–ToF–MS) to resolve compounds that co-eluted in the 1D GC analysis. Quantification of selected compounds (β-sitosterol and ursolic acid) were done using a validated ultra performance liquid chromatography-photodiode-array detection (UPLC–PDA) method. The chemical profiles obtained from each of the four techniques were very similar for the samples from each country. The HPTLC profiles for Zimbabwe samples were distinctly different from the other two countries with a unique band at Rf value of 0.80. Multivariate analysis of the HPTLC data (using rTLC software), UPLC–MS, 1D GC–ToF–MS and 1H–NMR data revealed three clusters that were country specific. Chemometric analysis through the construction of PCA and a PLS–DA scores plots was performed, followed by the construction of variable important in projection plots, whereby marker compounds contributing significantly to the separation of the three clusters were selected and tentatively identified. Quantitative analysis revealed that samples from Zimbabwe contained higher levels of β-sitosterol (29.2 – 119 µg/g dry weight (DW) of the extract) compared to DRC and Cameroon, while samples from Cameroon were found to contain the highest levels of ursolic acid (1.80 – 141 µg/g DW of the extract). HPTLC, UPLC–MS, 1D and 2D GC–ToF–MS and 1H–NMR are valid tools for quality control of P. africana plant materials after revealing three clusters of samples collected from the three countries. Cameroon samples had high content of ursolic acid, while Zimbabwe samples showed high levels of β-sitosterol. The number of compounds detected across the three countries by 1D GC–ToF–MS was less compared to 2D GC–ToF–MS, which enhanced separation and resolution.
Article
Full-text available
Prunus dulcis is one of the most widely cultivated species in the world. Its fruit (almond) is rich in various nutritious and bioactive compounds that exert several beneficial effects. The aim of this study was to determine the chemical profile and evaluate the biological potential in vitro of almond shell extracts. The chemical analysis of shell extracts led to the identification of 15 compounds by HPLC-DAD, of which 11 were first detected in the almond plant. Twenty-six volatile compounds were identified by the GC-MS technique; among them, seven were firstly detected in the studied plant. For the biological activities, the extracts demonstrated moderate inhibition potential against the antioxidant, antidiabetic, and cytotoxic activities. The methanol extract at 50 µg/mL showed the highest antioxidant (45%) and antidiabetic activities (45% against alpha-glucosidase and 31% against alpha-amylase extracts), while the cyclohexane and dichloromethane at 50 µg/mL showed the highest cytotoxic activity towards Hela (32.2% with cyclohexane) and RAW 264-7 (45% with dichloromethane). Overall, these findings demonstrate the potential of almond shell extracts as a source of bioactive compounds that could be applied in the pharmaceutical and medical fields.
Preprint
Full-text available
Prunus dulcis is one of the most widely cultivated species in the world. Its fruit (almond) is rich in various nutritious and bioactive compounds that exert several beneficial effects. The aim of this study was to determine the chemical profile and evaluate the biological potential in vitro of almond shell extracts. The chemical analysis of shell extracts led to the identification of 15 com-pounds by HPLC-DAD of which 11 were first detected in the almond plant. Twenty-six volatile compounds were identified by the GC-MS technique, among them; seven were firstly detected in the studied plant. For the biological activities, the extracts demonstrated moderate inhibition potential against the antioxidant, antidiabetic, and cytotoxic activities. The methanol extract at 50 µg/mL showed the highest antioxidant (45%) and antidiabetic activities (45% against alpha-glucosidase and 31% against alpha-amylase extracts), while the cyclohexane and dichloromethane at 50 µg/mL showed the highest cytotoxic activity towards Hela (32.2% with cyclohexane), and RAW 264-7 (45% with dichloromethane). Overall, these findings demonstrate the potential of almond shell extracts as a source of bioactive compounds that could be applied in the pharmaceutical and medical fields.
Article
Ethnopharmacological relevance: Prunus africana (Hook.f.) Kalkman (Rosaceae), commonly known as "Pygeum" or "African cherry", occurs in mainland montane forest "islands" scattered across sub-Saharan Africa, Madagascar, and some surrounding islands. Traditionally, decoctions of the stem-bark are taken orally for the treatment of a wide variety of conditions, such as benign prostatic hyperplasia (BPH), stomach ache, chest pain, malaria, heart conditions, and gonorrhoea, as well as urinary and kidney diseases. The timber is used to make axe handles and for other household needs. The dense wood is also sawn for timber. Aim: The fragmented information available on the ethnobotany, phytochemistry, and biological activities of the medicinally important P. africana was collated, organised, and analysed in this review, to highlight knowledge voids that can be addressed through future research. Materials and methods: A bibliometric analysis of research output on P. africana was conducted on literature retrieved, using the Scopus® database. The trend in the publications over time was assessed and a network analysis of collaborations between countries and authors was carried out. Furthermore, a detailed review of the literature over the period 1971 to 2021, acquired through Scopus, ScienceDirect, SciFinder, Pubmed, Scirp, DOAJ and Google Scholar, was conducted. All relevant abstracts, full-text articles and various book chapters on the botanical and ethnopharmacological aspects of P. africana, written in English and German, were consulted. Results: A total of 455 documents published from 1971 to 2021, were retrieved using the Scopus search. Analysis of the data showed that the majority of these documents were original research articles, followed by reviews and lastly a miscellaneous group comprising conference papers, book chapters, short surveys, editorials and letters. Data were analysed for annual output and areas of intense research focus, and countries with high research output, productive institutions and authors, and collaborative networks were identified. Prunus africana is reported to exhibit anti-inflammatory, analgesic, antimicrobial, anti-oxidant, antiviral, antimutagenic, anti-asthmatic, anti-androgenic, antiproliferative and apoptotic activities amongst others. Phytosterols and other secondary metabolites such as phenols, triterpenes, fatty acids, and linear alcohols have been the focus of phytochemical investigations. The biological activity has largely been ascribed to the phytosterols (mainly 3-β-sitosterol, 3-β-sitostenone, and 3-β-sitosterol-glucoside), which inhibit the production of prostaglandins in the prostate, thereby suppressing the inflammatory symptoms associated with BPH and chronic prostatitis. Conclusions: Many of the ethnobotanical assertions for the biological activity of P. africana have been confirmed through in vitro and in vivo studies. However, a disparity exists between the biological activity of the whole extract and that of single compounds isolated from the extract, which were reported to be less effective. This finding suggests that a different approach to biological activity studies should be encouraged that takes all secondary metabolites present into consideration. A robust technique, such as multivariate biochemometric data analysis, which allows for a holistic intervention to study the biological activity of a species is suggested. Furthermore, there is a need to develop rapid and efficient quality control methods for both raw materials and products to replace the time-consuming and laborious methods currently in use.