Figure - available from: Frontiers in Earth Science
This content is subject to copyright.
Photos of shale outcrops in Lintanchang area. (A) Observation point Z-2; (B) observation point Z-4; (C) observation point Z-4; (D) observation point Z-5.
Source publication
Shale is a low-porosity and low-permeability reservoir, and structural fractures are the main controlling factor for the migration and accumulation of shale gas. Moreover, tectonic fractures are controlled by the paleo-tectonic stress field. In this paper, taking the Longmaxi Formation of the Lintanchang area as an example, the finite element numer...
Similar publications
Deep shale gas (burial depth > 3500 m) in the Longmaxi Formation of southern Sichuan Province will be the primary target for exploration and development in China for a relatively long period. However, the lack of a physical basis for the “sweet-spots” seismic and well-logging prediction is caused by uncertainty in the rock physical properties of de...
Citations
... In recent years, methods for predicting fractures can be roughly divided into three methods: using tectonic stress fields to predict fracture development, using logging data to predict fracture development, and using seismic methods to predict fractures (Zhang et al., 2022a;Hu, 2022). Many scholars have studied the relationship between tectonic stress field and the development and distribution of fractures in oil and gas reservoirs, and have obtained many important insights, which have effectively guided oil and gas exploration (Li and Zhang, 1997;Wang et al., 1997;Qin et al., 2004;Zhang et al., 2022b;Liu et al., 2023). ...
The production of fractured oil and gas reservoirs in the world accounts for more than half of total oil and gas production and is one of the important fields for increasing oil and gas storage and production in the 21st century. The key to characterizing fractured oil and gas reservoirs is the distribution pattern of natural fractures. The distribution of natural fractures is dominated by structural deformations and fractures. Therefore, analytical and structural simulations of the tectonic stress field in geological structural systems play a crucial role in obtaining fracture distribution patterns. In this paper we have developed a description of the distribution of natural fractures based on finite element numerical simulations of the paleotectonic stress field. The study focused on the Chang 7 and Huangjialing Chang 8 reservoirs in the underground Siwan region of the Ordos Basin in China. First, an experimental assessment of the rock mechanics of the reservoir was completed, and the values of the paleotectonic stresses obtained from the tests were used as inversion criteria for the stress field simulations. Based on the geology, a refined geological model has been developed to study the structure of the Chang 7 and Chang 8 oil reservoirs in the block. The simulated paleotectonic stress fields for natural fractures in the Indosinian period are as follows: maximum principal stress of 94.67 MPa, minimum principal stress of 21.58 MPa, and vertical stress of 28.07 MPa. The direction of maximum principal stress remains essentially in the NE-SW direction, with the largest differential stress occurring in the Chang 8 oil layer group in Huangjialing, while the differential stress is relatively uniform in the Chang 7 oil layer group in Xiasiwan. It predicts the relative density of natural fractures in the Chang 7 and Chang 8 reservoirs, and finds high-to-low plane heterogeneity in the Huangjialing Chang 8 reservoir group and the Xiasiwan Chang 7 reservoir group, respectively. The paper reveals the pattern of development of reservoir fractures in both vertical and horizontal directions, providing an important geological basis for efficient and rational exploitation of oil and gas resources in the study area and improving oil recovery.
... The brittleness index is a useful method for evaluating reservoir fracturability. There are many methods for calculating the brittleness index based on different fields, different problems, and different testing methods (Li, 2022;Zhang et al., 2022;Yang et al., 2023). Different calculation methods consider different factors and take different amounts of time and cost to evaluate brittleness. ...
Shale gas is a very important unconventional energy. The mechanical properties of the three types of shale (laminated shale, sandwich shale and foliated shale) are different, and the difference in fracturing effectiveness is very significant. In this paper, the mineral composition, mechanical properties and conductivity of these three different types of shale were studied and compared by X-ray diffraction, triaxial mechanical experiments, and fracture conduction experiments. The study found that the foliated shale has the lowest content of rigid minerals (47.5%), lower elastic modulus and tensile strength (26.98 Gpa and 168.29 MPa, respectively), higher Poisson’s ratio (0.25), the smallest brittleness index (0.48), and larger fracture toughness (0.42). The laminated shale has a higher content of rigid minerals (68.50%), the lowest elastic modulus and tensile strength (25.77 Gpa and 122.46 MPa, respectively), the highest Poisson’s ratio (0.26), the highest brittleness index (0.56), and the lowest fracture toughness (0.18). The sandwich shale has the highest rigid mineral content (78.16%), the highest elastic modulus and tensile strength (35.31 Gpa and 197.37 MPa, respectively), the lowest Poisson’s ratio (0.24), a larger brittleness index (0.52), and larger fracture toughness (0.415). Furthermore, with the increase in the coring angle, the elastic modulus of all three shales increases. In addition, with the increase in closing pressure and the decrease in the sand laying concentration, the proppant embedding depth gradually increases and the conductivity decreases. This means that from the perspective of forming complex fracture networks, the fracturing effect of the foliated shale is unsatisfactory, while the fracturing effect of the laminated and sandwich shales is better. Moreover, it is recommended to prefer directional injection along vertical laminae or at high angles, which is conducive to the formation of complex fracture networks. For laminated shale with low strength, the sand laying concentration should be increased to ensure the conductivity of the fractured fracture. This study provides some technical guidance for the identification of different types of shale fracturing desserts and fracturing processes.
The Dengying Formation within Pengtan 1 well area in the Sichuan Basin is a vital gas reservoir for exploration and development. The reservoir is situated in a complex fault block structure characterized by multistage fault evolution, leading to a complicated distribution of tectonic fractures crucial for the accumulation and migration of oil and gas. This study establishes a geological model to describe the fault patterns observed in the region and conducts numerical simulations of the paleotectonic stress field. Moreover, we combine rock fracture criteria and strain and surface energy theories to predict tectonic fractures quantitatively. Our findings indicate that the tectonic fractures in the study area predominantly consist of shear fractures, with primary development of low‐angle and oblique fractures and, to a lesser extent, high‐angle fractures. These fractures generally exhibit trends in the north–northwest (NNW), northeast (NE), nearly east–west (EW), and nearly south–north (SN) directions. Most fractures formed during the Yanshanian–Himalayan period are identified as effective fractures. The maximum and minimum principal stress values recorded for the Himalayan period of tectonic activity were 150–180 and 120–150 MPa, respectively. Faults significantly influence the distribution of tectonic stress, and stress concentration usually occurs near the fault. A significant correlation exists between tectonic stress and burial depth, exhibiting lower stress levels at shallower depths. In addition, the linear density of fractures gradually decreases from the fault core to its periphery and further decreases to areas far away from the fault. In these three regions, fractures mainly develop in the order of high angle, oblique, and low angle. This study enhances our understanding of the fracture dynamics within the Dengying Formation, contributing valuable insights into the region’s geomechanical properties and potential hydrocarbon exploitation strategies.
Structural fractures are formed when the underground rock mass deforms and exceeds its own strength limit, so they represent the complex geomechanical properties of rock. Small or core‐scale fractures usually extend less than 10 m in length, which affects the productivity of tight sandstone. Therefore, core‐scale fracture is the core factor for the prediction of reservoir sweet spots. In this paper, the research on the evolution and prediction of natural fractures in tight sandstone is investigated using the core, thin section, logging materials and numerical simulation methods. The results show that a large number of vertical and horizontal sliding fractures with shearing properties are developed in the tight sandstones of the Yanchang Formation. The particle size affects the compactible space inside the reservoir, which then affects the fracture development degree. Since the superimposed thin sand bodies are formed by the frequent lateral migration of the underwater distributary channels in the study area, therefore, the natural fractures in the thin sand bodies at the edge of river channels are relatively developed. According to statistics, the vertical extension distance of fractures is usually less than 2 m. Meanwhile, the fractured zones are mainly located in the cumulative sand body thickness range of 3 ~ 10 m. Moreover, the fractured zones are generally located in the high part of the structure and its wings. Regional structure and thin sand body distribution jointly affect the evolution of fractures in tight sandstones. Through this study, we found that fractures are more developed in thin sand bodies, and the controlling factors include lithology, sedimentary microfacies, sand thickness and local structure. The comprehensive evaluation of fractures in tight sandstones with high accuracy from 1D to 3D was achieved using core observation, logging interpretation, and three‐dimensional (3D) fracture modelling. Fracture development characteristics in low amplitude tectonic zone (Modified according to Zeng et al., 2016). A and B represent two groups of conjugate vertical fractures, and C represents horizontal sliding fractures. Fractures are more developed in thin sand bodies, and the controlling factors include lithology, sedimentary microfacies, sand thickness and local structure.