Figure 1 - available via license: Creative Commons Attribution 4.0 International
Content may be subject to copyright.
Peninsular Malaysia map showing states (divided into administrative levels of district) and federal territories.
Source publication
The life-threatening zoonotic malaria cases caused by Plasmodium knowlesi in Malaysia has recently been reported to be the highest among all malaria cases; however, previous studies have mainly focused on the transmission of P. knowlesi in Malaysian Borneo (East Malaysia). This study aimed to describe the transmission patterns of P. knowlesi infect...
Contexts in source publication
Context 1
... study area primarily focused on Peninsular Malaysia which spreads from latitude 1 • 15 50.0 N to 6 • 43 36 N and from longitude 99 • 35 E to 104 • 36 E. Peninsular Malaysia covers a land area of 13.21 million hectares (Figure 1) [18]. Forested areas account for approximately 5.76 million hectares, which is equivalent to 43.6% of the land area of Peninsular Malaysia [18]. ...
Context 2
... mean daily temperature ranges from 25 to 28 °C. Peninsular Malaysia is divided into 11 states (Perlis, Kedah, Pulau Pinang, Perak, Selangor, Negeri Sembilan, Melaka, Johor, Kelantan, Terengganu, and Pahang) and 2 federal territories (Kuala Lumpur and Putrajaya) (Figure 1). Approximately 24.7% of the population of Peninsular Malaysia reside in sub-urban and rural areas. ...
Context 3
... indigenous malaria case is a case contracted locally with no evidence of importation and no direct link to transmission from an imported case, whereas an imported malaria is a case in which the infection was acquired outside the area in which it was diagnosed [22]. The case Peninsular Malaysia is divided into 11 states (Perlis, Kedah, Pulau Pinang, Perak, Selangor, Negeri Sembilan, Melaka, Johor, Kelantan, Terengganu, and Pahang) and 2 federal territories (Kuala Lumpur and Putrajaya) (Figure 1). Approximately 24.7% of the population of Peninsular Malaysia reside in sub-urban and rural areas. ...
Context 4
... number of indigenous P. knowlesi cases was apparently higher than other indigenous human malaria cases (P. malariae, P. falciparum, and P. vivax) in most years except 2011 and 2016 ( Figure A1). Although fewer females were infected with P. knowlesi as compared to males, female patients (median 39 years, interquartile range 23-52 years) were generally older than the males (median 34 years, interquartile range 25.5-45 years). ...
Similar publications
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s he...
Reported incidence of the zoonotic malaria Plasmodium knowlesi has markedly increased across Southeast Asia and threatens malaria elimination. Nonzoonotic transmission of P. knowlesi has been experimentally demonstrated, but it remains unknown whether nonzoonotic transmission is contributing to increases in P. knowlesi cases. Here, we adapt model-b...
The genetic diversity of pkmsp-1 of Malaysian Plasmodium knowlesi isolates was studied recently. However, the study only included three relatively older strains from Peninsular Malaysia and focused mainly on the conserved blocks of this gene. In this study, the full-length pkmsp-1 sequence of recent P. knowlesi isolates from Peninsular Malaysia was...
Citations
... This highlights the complexity of zoonotic transmission to humans as different species may vary in transmissibility, exposure and susceptibility to humans. Spatial analysis of P. knowlesi human cases in Peninsular Malaysia from 2011 to 2018 revealed that P. knowlesi cases tended to cluster around the Kelantan-Pahang border, particularly in the Gua Musang (Kelantan) and Kuala Lipis (Pahang) districts 25 . Here we report a P. knowlesi macaque prevalence of 19.4% and 61.6% for Kelantan and Pahang, respectively. ...
... In conclusion, this study showed that the P. knowlesi, P. cynomolgi, P. inui, P. coatneyi and P. fieldi are widely distributed across Peninsular Malaysia in the M. fascicularis population. Although P. knowlesi was the least prevalent among the 5 species, it is the species that is responsible for the majority of symptomatic cases in humans 25 . In contrast, P. cynomolgi and P. inui although more prevalent in the macaque population, have comparatively fewer human cases and mostly result in asymptomatic infections 8,[11][12][13][14] . ...
The parasite Plasmodium knowlesi has been the sole cause of malaria in Malaysia from 2018 to 2022. The persistence of this zoonotic species has hampered Malaysia’s progress towards achieving the malaria-free status awarded by the World Health Organisation (WHO). Due to the zoonotic nature of P. knowlesi infections, it is important to study the prevalence of the parasite in the macaque host, the long-tailed macaque (Macaca fascicularis). Apart from P. knowlesi, the long-tailed macaque is also able to harbour Plasmodium cynomolgi, Plasmodium inui, Plasmodium caotneyi and Plasmodium fieldi. Here we report the prevalence of the 5 simian malaria parasites in the wild long-tailed macaque population in 12 out of the 13 states in Peninsular Malaysia using a nested PCR approach targeting the 18s ribosomal RNA (18s rRNA) gene. It was found that all five Plasmodium species were widely distributed throughout Peninsular Malaysia except for states with major cities such as Kuala Lumpur and Putrajaya. Of note, Pahang reported a malaria prevalence of 100% in the long-tailed macaque population, identifying it as a potential hotspot for zoonotic transmission. Overall, this study shows the distribution of the 5 simian malaria parasite species throughout Peninsular Malaysia, the data of which could be used to guide future malaria control interventions to target zoonotic malaria.
... This highlights the complexity of zoonotic transmission to humans as different species may vary in transmissibility, exposure and susceptibility to humans. Spatial analysis of P. knowlesi human cases in Peninsular Malaysia from 2011-2018 revealed that P. knowlesi cases tended to cluster around the Kelantan-Pahang border, particularly in the Gua Musang (Kelantan) and Kuala Lipis (Pahang) districts [25]. Here we report a P. knowlesi macaque prevalence of 19.4% and 61.6% for Kelantan and Pahang, respectively. ...
The parasite Plasmodium knowlesi has been the sole cause of malaria in Malaysia from 2018–2022. Due to the high burden of P. knowlesi in Malaysia, this has hampered Malaysia from achieving the malaria-free status awarded by the World Health Organisation (WHO). Due to the zoonotic nature of P. knowlesi infections, it is important to study the prevalence of the parasite in the macaque host, the long-tailed macaque ( Macaca fascicularis ). Apart from P. knowlesi , the long-tailed macaque is also able to harbour Plasmodium cynomolgi, Plasmodium inui, Plasmodium caotneyi and Plasmodium fieldi. Here we report the prevalence of the 5 simian malaria parasites in the wild long-tailed macaque population in 12 out of the 13 states in Peninsular Malaysia using a nested PCR approach targeting the 18s ribosomal RNA (18s rRNA) gene. It was found that all five Plasmodium species were widely distributed throughout Peninsular Malaysia except for states with major cities such as Kuala Lumpur and Putrajaya. Of note, Pahang reported a malaria prevalence of 100% in the long-tailed macaque population, identifying it as a potential hotspot for zoonotic transmission. Overall, this study shows the distribution of the 5 simian malaria parasite species throughout Peninsular Malaysia, the data of which could be used to guide future malaria control interventions to target zoonotic malaria.
... Furthermore, the influx of migrant workers from malaria-endemic countries and challenges of drug resistance have exacerbated the risk of re-emergence of the disease. Due to the large-scale clearing of forest areas for logging and agricultural purposes, Malaysia faces the problem of increasing cases of simian malaria driven by the migration of macaques to human settlements, particularly in the remote areas where the aboriginal populations live [3,5,8,10]. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018 [1], it is essential to acknowledge the prevalence of non-human malaria and strengthen the effectiveness of the national elimination program. ...
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s healthcare system. We reviewed previously scattered information on zoonotic malaria infections in both Peninsular Malaysia and Malaysian Borneo to determine the epidemiology and distribution of emerging zoonotic malaria infections. Given the high prevalence of zoonotic malaria in Malaysia, efforts should be made to detect zoonotic malaria in humans, mosquito vectors, and natural hosts to ensure the success of the National Malaria Elimination Strategic Plan.
... From 2011 to 2019, 36.6% (189) of all malaria cases reported in Johor were caused by P. knowlesi. As the human malaria cases reduced over the years, the cases of P. knowlesi malaria have increased in Peninsular Malaysia [31]. Thus, the distribution and bionomics of simian malaria vectors are significant aspects required for zoonotic malaria prevention. ...
... This kind of landscape provides clean and suitable water bodies for the breeding of the Anopheles mosquitoes. Based on previous studies [31,41,42], the current results concur that people working in the jungle like police or army and people involved in the agricultural sector were more likely to be exposed to the infection than other occupations. The number of males infected with knowlesi malaria was higher than the female because of their type of profession. ...
Background
Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.
Methods
Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 ( ITS2 ) and cytochrome c oxidase subunit I ( COI ) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.
Results
One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20–39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens . Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0–5 km.
Conclusions
This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.
Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.
ELife digest
Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of ‘monkey malaria’, which has been declared a public health threat by The World Health Organisation.
In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites.
Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places.
Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more ‘fragmented’ forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates.
Johnsons et al.’s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.
Background
The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.
Methodology/Principal findings
We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.
Conclusions/Significance
With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.
The emergence of potentially life-threatening zoonotic malaria caused by Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted in Malaysian Borneo to determine the association between environmental factors and knowlesi malaria transmission. However, there is still a lack of understanding of the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. Therefore, our study aimed to investigate the ecological distribution of human P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 1st January 2011 to 31st December 2019 were collated from the Ministry of Health Malaysia and geolocated. Three machine learning-based models, maximum entropy (MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, were applied to predict the spatial variation of P. knowlesi disease risk. Multiple environmental parameters including climate factors, landscape characteristics, and anthropogenic factors were included as predictors in both predictive models. Subsequently, an ensemble model was developed based on the output of both MaxEnt and XGBoost. Comparison between models indicated that the XGBoost has higher performance as compared to MaxEnt and ensemble model, with AUCROC values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key environmental covariates affecting human P. knowlesi occurrence were distance to the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to the forest. Our models indicated that the disease risk areas were mainly distributed in low elevation (75–345 m above mean sea level) areas along the Titiwangsa mountain range and inland central-northern region of Peninsular Malaysia. The high-resolution risk map of human knowlesi malaria constructed in this study can be further utilized for multi-pronged interventions targeting community at-risk, macaque populations, and mosquito vectors.
Plasmodium knowlesi infections in Malaysia are a new threat to public health and to the national efforts on malaria elimination. In the Kapit division of Sarawak, Malaysian Borneo, two divergent P. knowlesi subpopulations (termed Cluster 1 and Cluster 2) infect humans and are associated with long-tailed macaque and pig-tailed macaque hosts, respectively. It has been suggested that forest-associated activities and environmental modifications trigger the increasing number of knowlesi malaria cases. Since there is a steady increase of P. knowlesi infections over the past decades in Sarawak, particularly in the Kapit division, we aimed to identify hotspots of knowlesi malaria cases and their association with forest activities at a geographical scale using the Geographic Information System (GIS) tool. A total of 1064 P. knowlesi infections from 2014 to 2019 in the Kapit and Song districts of the Kapit division were studied. Overall demographic data showed that males and those aged between 18 and 64 years old were the most frequently infected (64%), and 35% of infections involved farming activities. Thirty-nine percent of Cluster 1 infections were mainly related to farming surrounding residential areas while 40% of Cluster 2 infections were associated with activities in the deep forest. Average Nearest Neighbour (ANN) analysis showed that humans infected with both P. knowlesi subpopulations exhibited a clustering distribution pattern of infection. The Kernel Density Analysis (KDA) indicated that the hotspot of infections surrounding Kapit and Song towns were classified as high-risk areas for zoonotic malaria transmission. This study provides useful information for staff of the Sarawak State Vector-Borne Disease Control Programme in their efforts to control and prevent zoonotic malaria.