Figure 6 - uploaded by Erik Hansen
Content may be subject to copyright.
Normalized homogenization factors as function of the gap coordinate h 0 for the specific roughness shown in Figure 3.

Normalized homogenization factors as function of the gap coordinate h 0 for the specific roughness shown in Figure 3.

Source publication
Article
Full-text available
A considerable number of surface texture investigations is based on pin-on-disc tribometers. This work shows that a crucial role in the reproducibility of the results, e.g. Stribeck curves, is played by the geometry of the pin surface. The investigation is based on an elastohydrodynamic model of a pin-on-disc tribometer which is validated with expe...

Contexts in source publication

Context 1
... their solutions, the homogenization factors are computed as a function of the gap coordinate. This dependency of the normalized homogenization factors is displayed in Figure 6. Since the homogenization factors are normalized with the meltdown gap height h m , the homogenization method coincides with the concept of a hydrodynamically smooth surface along the deformed roughness mean plane as long as the normalization of A 11 , A 22 , b 1 is equal to 1 and A 12 , A 21 , b 2 are equal to 0. Otherwise, the flow factors of both methods differ from each other, which becomes visible for values below h 0 = 1µm. ...
Context 2
... their solutions, the homogenization factors are computed as a function of the gap coordinate. This dependency of the normalized homogenization factors is displayed in Figure 6. Since the homogenization factors are normalized with the meltdown gap height h m , the homogenization method coincides with the concept of a hydrodynamically smooth surface along the roughness mean plane as long as the normalizations of A 11 , A 22 , b 1 are equal to 1 and A 12 , A 21 , b 2 are equal to 0. Otherwise, the flow factors of both methods differ from each other, which becomes visible for values below h 0 = 1µm. ...

Similar publications

Article
Full-text available
The popularity of coated aluminum is gainingsignificant attention in numeroussectors in the industry due to itsspecificstrength, corrosion resistance, and recyclability.However, because of friction, its lifetime reduces which causes a billion-dollar loss every year to our property.Many types of research are going around the world on how friction an...

Citations

... Attention is paid to double the size of the kernel in each direction and to zero pad the hydrodynamic pressure field such that a linear instead of a circular convolution is obtained. After the convolution, the deformation and pressure fields are resized to their original size [23,32,33]. After computing ⃗ G and ⃗ F , the Newton-Raphson method is used to determine the updates of non-dimensional relative pressure ⃗ p * and cavity fraction ⃗ [10]: ...
Article
Full-text available
Many engineering applications rely on lubricated gaps where the hydrodynamic pressure distribution is influenced by cavitation phenomena and elastic deformations. To obtain details about the conditions within the lubricated gap, solvers are required that can model cavitation and elastic deformation effects efficiently when a large amount of discretization cells is employed. The presented unsteady EHL-FBNS solver can compute the solution of such large problems that require the consideration of both mass-conserving cavitation and elastic deformation. The execution time of the presented algorithm scales almost with Nlog(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\log (N)$$\end{document} where N is the number of computational grid points. A detailed description of the algorithm and the discretized equations is presented. The MATLAB©\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\copyright }$$\end{document} code is provided in the supplements along with a maintained version on GitHub to encourage its usage and further development. The output of the solver is compared to and validated with analytical, simulated, and experimental results from the literature to provide a detailed comparison of different discretization schemes of the Couette term in presence of gap height discontinuities. As a final result, the most favorable scheme is identified for the unsteady study of surface textures in ball-on-disc tribometers under EHL conditions.
... Attention is paid to double the size of the kernel in each direction and to zero pad the hydrodynamic pressure field such that a linear instead of a circular convolution is obtained. After the convolution, the deformation and pressure fields are resized to their original size [23,31,32]. ...
Preprint
Full-text available
Many engineering applications rely on lubricated gaps where the hydrodynamic pressure distribution is influenced by cavitation phenomena and elastic deformations. To obtain details about the conditions within the lubricated gap, solvers are required that can model cavitation and elastic deformation effects efficiently when a large amount of discretization cells is employed. The presented unsteady EHL-FBNS solver can compute the solution of such large problems that require the consideration of both mass-conserving cavitation and elastic deformation. The execution time of the presented algorithm scales almost with N log( N ) where N is the number of computational grid points. A detailed description of the algorithm and the discretized equations is presented. The MATLAB © code is provided in the supplements along with a maintained version on GitHub to encourage its usage and further development. The output of the solver is compared to and validated with simulated and experimental results from the literature to provide a detailed comparison of different discretization schemes of the Couette term in presence of gap height discontinuities. As a final result, the most favourable scheme is identified for the unsteady study of surface textures in ball-on-disc tribometers under severe EHL conditions.
... Empirically, it has been found that, in the hydrodynamic regime, the friction coefficient μ (the ratio of friction force and normal force) scales with the "conventional" Hersey number, defined as Hr ≡ ðηU 0 =F N Þ, where η, U 0 , and F N are the viscosity, sliding velocity, and normal force, respectively. The scaling has been suggested to be linear [5,11], although more recent work uses a power-law relation [12][13][14][15]. ...
Article
Most frictional contacts are lubricated in some way, but is has proven difficult to measure and predict lubrication layer thicknesses and assess how they influence friction at the same time. Here we study the problem of rigid-isoviscous lubrication between a plate and a sphere, both experimentally and theoretically. The liquid layer thickness is measured by a novel method using inductive sensing, while the friction is measured simultaneously. The measured values of the layer thickness and friction on the disk are well described by the hydrodynamic description of liquid flowing through a contact area. This allows us to propose a modified version of the Hersey number that compares viscous to normal forces and allows us to rescale data for different geometries and systems. The modification overcomes the shortcomings of the commonly used Hersey number, adds the effects of the geometry of the configuration on the friction, and successfully predicts the lubrication layer thickness.