Monthly mean zonal wind (ms-1) of AGUNG2 for April (a) and June (b) 1963 in shading. Contour lines show the stream function (kgs-1). Positive (solid) streamlines describe clockwise circulation, negative (dashed) ones counterclockwise circulation. The gray dots mark the injection location of the two volcanic eruptions.

Monthly mean zonal wind (ms-1) of AGUNG2 for April (a) and June (b) 1963 in shading. Contour lines show the stream function (kgs-1). Positive (solid) streamlines describe clockwise circulation, negative (dashed) ones counterclockwise circulation. The gray dots mark the injection location of the two volcanic eruptions.

Source publication
Article
Full-text available
In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the third largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, which can create a long-lasting stratospheric sulfate layer. The estimated mass flux of the first eruption was about twice as large as the ma...

Similar publications

Preprint
Full-text available
Abstract. Accurate quantification of the effects of volcanic eruptions on climate is a key requirement for better attribution of anthropogenic climate change. Here we use the UM-UKCA composition-climate model to simulate the atmospheric evolution of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Agung, 1982 E...
Preprint
Full-text available
Volcanic sunsets are usually associated with extended and enhanced reddish colours typically complemented by purple colours at higher elevations. However, many eyewitnesses reported remarkably clear and distinct green twilight colours after the eruption of Krakatoa (Sunda Strait, Indonesia) on August 27, 1883. To our best knowledge, no earlier stud...
Preprint
Full-text available
We investigate the climatic effects of volcanic eruptions spanning from Mt.\ Pinatubo-sized events to super-volcanoes. The study is based on ensemble simulations in the Community Earth System Model Version 2 (CESM2) climate model using the Whole Atmosphere Community Climate Model Version 6 (WACCM6) atmosphere model. Our analysis focuses on the impa...
Preprint
Full-text available
We developed a new retrieval algorithm based on the Infrared Atmospheric Sounding Interferometer (IASI) observations, called AEROIASI-Sulphates, to measure vertically-resolved sulphate aerosols (SA) extinction and mass concentration profiles, with limited theoretical uncertainties (typically ~25 % total uncertainty for SA mass column estimations)....
Preprint
Full-text available
In June 2019 a stratospheric moderate eruption occurred at Raikoke (48° N, 153° E). Satellite observations show the injection of ash and SO2 into the lower stratosphere and an early entrainment of the plume into a cyclone. Following the Raikoke eruption stratospheric Aerosol Optical Depth (sAOD) values increased in the whole northern hemisphere and...

Citations

... A recent analysis re-assessing the variability in and global distribution of the Agung aerosol cloud [8] raises again the issue of the few available observational datasets. The study also highlights the large differences between the recommended volcanic forcing datasets for the Agung period used for CMIP6 [9] and CMIP5 [10] simulations. ...
... The term "attenuation" was used when referring to the component Rayleigh and aerosol extinctions. The distinction is illustrated on page 11, second paragraph, second sentence in [32] and in [33] page 13, Section 5.1, definition of Equation (8). Within this article, however, the term extinction is used in all cases (rather than attenuation), with the precursor words "Rayleigh", "aerosol" or "total" then specifying the corresponding quantity. ...
Article
Full-text available
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32°N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm that cover the period from December 1963 to December 1964. It is a unique record of the portion of the aerosol cloud from the March 1963 Agung volcanic eruption that was transported into the Northern Hemisphere subtropics. The data-recovery methodology involved re-digitizing the 105 original aerosol extinction profiles from individual Figures within a research report, followed by the re-calibration. It involves inverting the original equation used to compute the aerosol extinction profile to retrieve the corresponding normalized detector response profile. The re-calibration of the original aerosol extinction profiles used Rayleigh extinction profiles calculated from local soundings. Rayleigh and aerosol slant transmission corrections are applied using the MODTRAN code in transmission mode. Also, a best-estimate aerosol phase function was calculated from observations and applied to the entire column. The tropospheric aerosol phase function from an AERONET station in the vicinity of the searchlight location was applied between 2.76 to 11.7 km. The stratospheric phase function, applied for a 12.2 to 35.2 km altitude range, is calculated from particle-size distributions measured by a high-altitude aircraft in the vicinity of the searchlight in early 1964. The original error estimate was updated considering unaccounted errors. Both the re-calibrated aerosol extinction profiles and the re-calibrated stratospheric aerosol optical depth magnitudes showed higher magnitudes than the original aerosol extinction profiles and the original stratospheric aerosol optical depth, respectively. However, the magnitudes of the re-calibrated variables show a reasonable agreement with other contemporary observations. The re-calibrated stratospheric aerosol optical depth demonstrated its consistency with the tropics-to-pole decreasing trend, associated with the major volcanic eruption stratospheric aerosol pattern when compared to the time-coincident stratospheric aerosol optical depth lidar observations at Lexington at 42° N.
... It is expected that the uncertainty in the forcing is larger for the eruption of Agung than for the other two eruptions (e.g. Niemeier et al., 2019), since this eruption occurred during the pre-satellite era and it is estimated with the AER-2D model (Arfeuille et al., 2014) from ground-based measurements. The global mean AOD (Fig. 1a) shows that the 1991 eruption of mount Pinatubo was the largest eruption of the three. ...
Article
Full-text available
In recent decades, three major volcanic eruptions of different intensity have occurred (Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991), with reported climate impacts on seasonal to decadal timescales that could have been potentially predicted with accurate and timely estimates of the associated stratospheric aerosol loads. The Decadal Climate Prediction Project component C (DCPP-C) includes a protocol to investigate the impact of volcanic aerosols on the climate experienced during the years that followed those eruptions through the use of decadal predictions. The interest of conducting this exercise with climate predictions is that, thanks to the initialisation, they start from the observed climate conditions at the time of the eruptions, which helps to disentangle the climatic changes due to the initial conditions and internal variability from the volcanic forcing. The protocol consists of repeating the retrospective predictions that are initialised just before the last three major volcanic eruptions but without the inclusion of their volcanic forcing, which are then compared with the baseline predictions to disentangle the simulated volcanic effects upon climate. We present the results from six Coupled Model Intercomparison Project Phase 6 (CMIP6) decadal prediction systems. These systems show strong agreement in predicting the well-known post-volcanic radiative effects following the three eruptions, which induce a long-lasting cooling in the ocean. Furthermore, the multi-model multi-eruption composite is consistent with previous work reporting an acceleration of the Northern Hemisphere polar vortex and the development of El Niño conditions the first year after the eruption, followed by a strengthening of the Atlantic Meridional Overturning Circulation the subsequent years. Our analysis reveals that all these dynamical responses are both model- and eruption-dependent. A novel aspect of this study is that we also assess whether the volcanic forcing improves the realism of the predictions. Comparing the predicted surface temperature anomalies in the two sets of hindcasts (with and without volcanic forcing) with observations we show that, overall, including the volcanic forcing results in better predictions. The volcanic forcing is found to be particularly relevant for reproducing the observed sea surface temperature (SST) variability in the North Atlantic Ocean following the 1991 eruption of Pinatubo.
... Agung, the third-strongest eruption of the 20th century. It too invaded the stratosphere (Neimeier et al. 2019). Observations of perturbed SW radiation then, through which its impact on Enet could be represented, do not exist. ...
Article
Full-text available
Unlike much of the Earth, surface temperature in the tropics underwent a systematic and sustained increase during the satellite era. Due to the temperature dependence of surface processes which regulate CO2 emission, that long-term change should exert a similar influence on atmospheric CO2. We develop how this influence would manifest in the evolution of CO2. Observed records are then used to investigate the interdependence of surface temperature and net CO2 emission-the component of emission that actually changes CO2. Thermally-induced emission, especially from tropical land surface, is found to represent much of the observed evolution of net CO2 emission. It accounts for sporadic intensifications of net emission that operate on interannual time scales, notably, during episodes of El Niño. Accounted for equally well is the long-term intensification of net emission during the last half century. Jointly, these unsteady components of net emission determine the thermally-induced component of anomalous CO2. It closely tracks the observed evolution of CO2.
... The Agung eruption is a combination of two eruptions: one in March and one in June 1963. Model simulations suggest that two small eruptions in the same year, are more likely to introduce a stronger meridional transport of air flow compared to a large eruption (Niemeier et al., 2019). Indeed, we do find significant increased air trajectory frequencies from the North Atlantic Ocean and North America to the Greenland ice core sites (Figure 7). ...
Article
Full-text available
Cosmogenic radionuclides (e.g., ¹⁰Be) from ice cores are a powerful tool for solar reconstructions back in time. However, superimposed on the solar signal, other factors like weather/climate and volcanic influences on ¹⁰Be can complicate the interpretation of ¹⁰Be data. A comprehensive study of ¹⁰Be records over the recent period, when atmospheric ¹⁰Be production and meteorological conditions are relatively well‐known, can improve our interpretation of ¹⁰Be records. Here we conduct a systematic study of the production and climate/volcanic signals in Antarctica and Greenland ¹⁰Be records, including a new ¹⁰Be record from the East GReenland Ice‐core Project site. Greenland and Antarctica records show significant decreasing trends (5%–6.5%/decade) for 1900–1950, which is comparable with the expected production rate inferred from sunspot observations. By comparing ¹⁰Be records with reanalysis data and atmospheric circulation patterns, ¹⁰Be records from Southern/Southeastern Greenland are significantly correlated with the Scandinavia pattern. Stacking ¹⁰Be records from different locations can enhance the production signal. However, this approach is not always straightforward as uncertainties in some records can lead to a weaker solar signal. A strategy can be employed to select records for the bipolar stack by comparing Greenland records with Antarctica records, assuming the shared signal is a production signal. Finally, we observe significant increases (36%–64%) in ¹⁰Be depositions in Greenland related to the Agung eruption. This large increase in Greenland ¹⁰Be records after the Agung eruption, could be partly explained by the enhanced air mass transport from mid‐latitudes coinciding with the decreased precipitation en‐route.
... The first of the ISA-MIP modelling groups to present results from all three of the HErSEA eruption cloud experiments was recently published (Dhomse et al., 2020). Another recent study focused on assessing the variability in and global distribution of the Agung aerosol cloud (Niemeier et al., 2019). ...
Article
Full-text available
We report the recovery and processing methodology of the first ever multi-year lidar dataset of the stratospheric aerosol layer. A Q-switched ruby lidar measured 66 vertical profiles of 694 nm attenuated backscatter at Lexington, Massachusetts, between January 1964 and August 1965, with an additional nine profile measurements conducted from College, Alaska, during July and August 1964. We describe the processing of the recovered lidar backscattering ratio profiles to produce mid-visible (532 nm) stratospheric aerosol extinction profiles (sAEP532) and stratospheric aerosol optical depth (sAOD532) measurements, utilizing a number of contemporary measurements of several different atmospheric variables. Stratospheric soundings of temperature and pressure generate an accurate local molecular backscattering profile, with nearby ozone soundings determining the ozone absorption, which are used to correct for two-way ozone transmittance. Two-way aerosol transmittance corrections are also applied based on nearby observations of total aerosol optical depth (across the troposphere and stratosphere) from sun photometer measurements. We show that accounting for these two-way transmittance effects substantially increases the magnitude of the 1964/1965 stratospheric aerosol layer's optical thickness in the Northern Hemisphere mid-latitudes, then ∼ 50 % larger than represented in the Coupled Model Intercomparison Project 6 (CMIP6) volcanic forcing dataset. Compared to the uncorrected dataset, the combined transmittance correction increases the sAOD532 by up to 66 % for Lexington and up to 27 % for Fairbanks, as well as individual sAEP532 adjustments of similar magnitude. Comparisons with the few contemporary measurements available show better agreement with the corrected two-way transmittance values. Within the January 1964 to August 1965 measurement time span, the corrected Lexington sAOD532 time series is substantially above 0.05 in three distinct periods, October 1964, March 1965, and May–June 1965, whereas the 6 nights the lidar measured in December 1964 and January 1965 had sAOD values of at most ∼ 0.03. The comparison with interactive stratospheric aerosol model simulations of the Agung aerosol cloud shows that, although substantial variation in mid-latitude sAOD532 are expected from the seasonal cycle in the stratospheric circulation, the Agung cloud's dispersion from the tropics would have been at its strongest in winter and weakest in summer. The increasing trend in sAOD from January to July 1965, also considering the large variability, suggests that the observed variations are from a different source than Agung, possibly from one or both of the two eruptions that occurred in 1964/1965 with a Volcanic Explosivity Index (VEI) of 3: Trident, Alaska, and Vestmannaeyjar, Heimaey, south of Iceland. A detailed error analysis of the uncertainties in each of the variables involved in the processing chain was conducted. Relative errors for the uncorrected sAEP532 were 54 % for Fairbanks and 44 % Lexington. For the corrected sAEP532 the errors were 61 % and 64 %, respectively. The analysis of the uncertainties identified variables that with additional data recovery and reprocessing could reduce these relative error levels. Data described in this work are available at 10.1594/PANGAEA.922105 (Antuña-Marrero et al., 2020a).
... The fine ash and sulfate aerosols both heat the stratosphere and thereby dynamically influence the resulting processes via circulation changes caused by absorption of near-infrared and LW radiation. This model has already been successfully applied for the simulation of recent and past large volcanic eruptions (e.g., Niemeier et al., 2009Niemeier et al., , 2019Toohey et al., , 2019. However, earlier studies with MAECHAM5-HAM were often performed with a lower horizontal and vertical resolution. ...
Article
Full-text available
Dated to approximately 13 000 years ago, the Laacher See (East Eifel volcanic zone) eruption was one of the largest midlatitude Northern Hemisphere volcanic events of the Late Pleistocene. This eruptive event not only impacted local environments and human communities but probably also affected Northern Hemispheric climate. To better understand the impact of a Laacher See-type eruption on NH circulation and climate, we have simulated the evolution of its fine ash and sulfur cloud with an interactive stratospheric aerosol model. Our experiments are based around a central estimate for the Laacher See aerosol cloud of 15 Tg of sulfur dioxide (SO2) and 150 Tg of fine ash, across the main eruptive phases in May and a smaller one in June with 5 TgSO2 and 50 Tg of fine ash. Additional sensitivity experiments reflect the estimated range of uncertainty of the injection rate and altitude and assess how the solar-absorptive heating from the fine ash emitted in the first eruptive phase changed the volcanic clouds' dispersion. The chosen eruption dates were determined by the stratospheric wind fields to reflect the empirically observed ash lobes as derived from geological, paleoecological and archeological evidence linked directly to the prehistoric Laacher See eruption. Whilst our simulations are based on present-day conditions, and we do not seek to replicate the climate conditions that prevailed 13 000 years ago, we consider our experimental design to be a reasonable approximation of the transport pathways in the midlatitude stratosphere at this time of year. Our simulations suggest that the heating of the ash plays an important role for the transport of ash and sulfate. Depending on the altitude of the injection, the simulated volcanic cloud begins to rotate 1 to 3 d after the eruption. This mesocyclone, as well as the additional radiative heating of the fine ash, then changes the dispersion of the cloud itself to be more southward compared to dispersal estimated without fine ash heating. This ash-cloud-generated southerly migration process may at least partially explain why, as yet, no Laacher See tephra has been found in Greenland ice cores. Sulfate transport is similarly impacted by the heating of the ash, resulting in stronger transport to low latitudes, later arrival of the volcanic cloud in the Arctic regions and a longer lifetime compared to cases without injection of fine ash. Our study offers new insights into the dispersion of volcanic clouds in midlatitudes and addresses a likely behavior of the ash cloud of the Laacher See eruption that darkened European skies at the end of the Pleistocene. In turn, this study can also serve as significant input for scenarios that consider the risks associated with re-awakened volcanism in the Eifel.
... Marotzke and Forster, 2015). There has been a substantial change in the volcanic forcing from 1963 Agung between Coupled Model Intercomparison Project (CMIP) 5 and 6 (Niemeier et al., 2019), and the effects that this change may have caused within CMIP5 and CMIP6 historical simulations is starting to become recognised (e.g. Mann et al., 2020). ...
Article
Full-text available
Accurately quantifying volcanic impacts on climate is a key requirement for robust attribution of anthropogenic climate change. Here we use the Unified Model – United Kingdom Chemistry and Aerosol (UM-UKCA) composition–climate model to simulate the global dispersion of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo. The model has interactive stratospheric chemistry and aerosol microphysics, with coupled aerosol–radiation interactions for realistic composition–dynamics feedbacks. Our simulations align with the design of the Interactive Stratospheric Aerosol Model Intercomparison (ISA-MIP) “Historical Eruption SO2 Emissions Assessment”. For each eruption, we perform three-member ensemble model experiments for upper, mid-point, and lower estimates of SO2 emission, each re-initialised from a control run to approximately match the observed transition in the phase of the quasi-biennial oscillation (QBO) in the 6 months after the eruptions. With this experimental design, we assess how each eruption's emitted SO2 translates into a tropical reservoir of volcanic aerosol and analyse the subsequent dispersion to mid-latitudes. We compare the simulations to the volcanic forcing datasets (e.g. Space-based Stratospheric Aerosol Climatology (GloSSAC); , and ) that are used in historical integrations for the two most recent Coupled Model Intercomparison Project (CMIP) assessments. For Pinatubo and El Chichón, we assess the vertical extent of the simulated volcanic clouds by comparing modelled extinction to the Stratospheric Aerosol and Gas Experiment (SAGE-II) v7.0 satellite measurements and to 1964–1965 Northern Hemisphere ground-based lidar measurements for Agung. As an independent test for the simulated volcanic forcing after Pinatubo, we also compare simulated shortwave (SW) and longwave (LW) top-of-the-atmosphere radiative forcings to the flux anomalies measured by the Earth Radiation Budget Experiment (ERBE) satellite instrument. For the Pinatubo simulations, an injection of 10 to 14 Tg SO2 gives the best match to the High Resolution Infrared Sounder (HIRS) satellite-derived global stratospheric sulfur burden, with good agreement also with SAGE-II mid-visible and near-infra-red extinction measurements. This 10–14 Tg range of emission also generates a heating of the tropical stratosphere that is consistent with the temperature anomaly present in the ERA-Interim reanalysis. For El Chichón, the simulations with 5 and 7 Tg SO2 emission give best agreement with the observations. However, these simulations predict a much deeper volcanic cloud than represented in the GloSSAC dataset, which is largely based on an interpolation between Stratospheric Aerosol Measurements (SAM-II) satellite and aircraft measurements. In contrast, these simulations show much better agreement during the SAGE-II period after October 1984. For 1963 Agung, the 9 Tg simulation compares best to the forcing datasets with the model capturing the lidar-observed signature of the altitude of peak extinction descending from 20 km in 1964 to 16 km in 1965. Overall, our results indicate that the downward adjustment to SO2 emission found to be required by several interactive modelling studies when simulating Pinatubo is also needed when simulating the Agung and El Chichón aerosol clouds. This strengthens the hypothesis that interactive stratospheric aerosol models may be missing an important removal or re-distribution process (e.g. effects of co-emitted ash) which changes how the tropical reservoir of volcanic aerosol evolves in the initial months after an eruption. Our model comparisons also identify potentially important inhomogeneities in the CMIP6 dataset for all three eruption periods that are hard to reconcile with variations predicted in the interactive stratospheric aerosol simulations. We also highlight large differences between the CMIP5 and CMIP6 volcanic aerosol datasets for the Agung and El Chichón periods. Future research should aim to reduce this uncertainty by reconciling the datasets with additional stratospheric aerosol observations.
... The first of the ISA-MIP modelling groups to present results from all three of the HErSEA eruption cloud experiments was recently published (Dhomse et al., 2020), with another recent study focusing on assessing the variability and global distribution of the Agung aerosol cloud (Niemeier et al., 2019). 60 ...
Preprint
Full-text available
We report the recovery and processing methodology of the first ever multi-year lidar dataset of the stratospheric aerosol layer. A Q-switched Ruby lidar measured 66 vertical profiles of 694 nm attenuated backscatter at Lexington, Massachusetts between January 1964 and August 1965, with an additional 9 profile measurements conducted from College, Alaska during July and August 1964. We describe the processing of the recovered lidar backscattering ratio profiles to produce mid-visible (532 nm) stratospheric aerosol extinction profiles (sAEP532) and stratospheric aerosol optical depth (sAOD532) measurements, utilizing a number of contemporary measurements of several different atmospheric variables. Stratospheric soundings of temperature, and pressure generate an accurate local molecular backscattering profile, with nearby ozone soundings determining the ozone absorption, those profiles then used to correct for two-way ozone transmittance. Two-way aerosol transmittance corrections were also applied based on nearby observations of total aerosol optical depth (across the troposphere and stratosphere) from sun photometer measurements. We show the two-way transmittance correction has substantial effects on the retrieved sAEP532 and sAOD532, calculated without the corrections resulting in substantially lower values of both variables, as it was not applied in the original processing producing the lidar scattering ratio profiles we rescued. The combined transmittance corrections causes the aerosol extinction to increase by 67 % for Lexington and 27 % for Fairbanks, for sAOD532 the increases 66 % and 26 % respectively. Comparing the magnitudes of the aerosol extinction and sAOD with the few contemporary available measurements reported show a better agreement in the case of the two way transmittance corrected values. The sAEP and sAOD timeseries at Lexington show a surprisingly large degree of variability, three periods where the stratospheric aerosol layer had suddenly elevated optical thickness, the highest sAOD532 of 0.07 measured at the end of March 1965. The two other periods of enhanced sAOD532 are both two-month periods where the lidars show more than 1 night where retrieved sAOD532 exceeded 0.05: in January and February 1964 and November and December 1964. Interactive stratospheric aerosol model simulations of the 1963 Agung cloud illustrate that although substantial variation in mid-latitude sAOD532 is expected from the seasonal cycle in the Brewer-Dobson circulation, the Agung cloud dispersion will have caused much slower increase than the more episodic variations observed, with also different timing, elevated optical thickness from Agung occurring in winter and spring. The abruptness and timing of the steadily increasing sAOD from January to July 1965 suggests this variation was from a different source than Agung, possibly from one or both of the two VEI3 eruptions that occurred in 1964/65: Trident, Alaska and Vestmannaeyjar, Heimey, south of Iceland. A detailed error analysis of the uncertainties in each of the variables involved in the processing chain was conducted, relative errors of 54 % for Fairbanks and 44 % Lexington for the uncorrected sAEP532, corrected sAEP532 of 61 % and 64 % respectively. The analysis of the uncertainties identified variables that, with additional data recovery and reprocessing could reduce these relative error levels. Data described in this work are available at https://doi.pangaea.de/10.1594/PANGAEA.922105 (Dataset in Review) (Antuña-Marrero et al., 2020a).
... Primary data and scripts used in the analysis and other supplementary information that may be useful in reproducing the author's work are archived by the Max Planck Institute for Meteorology and can be obtained by contacting pub-lications@mpimet.mpg.de. Model results of ECHAM are available under https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry? acronym=DKRZ_LTA_550_ds00002 (Niemeier et al., 2019). Model results of WACCM, and partly ECHAM, will also be made available via the CERA database of DKRZ. ...
Article
Full-text available
Artificial injections of sulfur dioxide (SO2) into the stratosphere show in several model studies an impact on stratospheric dynamics. The quasi-biennial oscillation (QBO) has been shown to slow down or even vanish under higher SO2 injections in the equatorial region. But the impact is only qualitatively but not quantitatively consistent across the different studies using different numerical models. The aim of this study is to understand the reasons behind the differences in the QBO response to SO2 injections between two general circulation models, the Whole Atmosphere Community Climate Model (WACCM-110L) and MAECHAM5-HAM. We show that the response of the QBO to injections with the same SO2 injection rate is very different in the two models, but similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason for the different response of the QBO corresponding to the same injection rate is very different vertical advection in the two models, even in the control simulation. The stronger vertical advection in WACCM results in a higher aerosol burden and stronger heating of the aerosols and, consequently, in a vanishing QBO at lower injection rate than in simulations with MAECHAM5-HAM. The vertical velocity increases slightly in MAECHAM5-HAM when increasing the horizontal resolution. This study highlights the crucial role of dynamical processes and helps to understand the large uncertainties in the response of different models to artificial SO2 injections in climate engineering studies.
... In the more recent climate models one key reason seems to be that climate effects are self-limiting for larger eruptions due to an increase in aerosol growth, which reduces peak AOD (English et al., 2013;Pinto et al., 1989;Timmreck et al., 2010). In addition, the role of atmospheric chemistry and OH limitation on sulfuric acid aerosols is continuously under discussion in the literature (Bekki, 1995;Mills et al., 2017;Niemeier et al., 2019;Robock et al., 2009;Timmreck et al., 2003). ...
Article
Full-text available
The supereruption of Los Chocoyos (14.6∘ N, 91.2∘ W) in Guatemala ∼84 kyr ago was one of the largest volcanic events of the past 100 000 years. Recent petrologic data show that the eruption released very large amounts of climate-relevant sulfur and ozone-destroying chlorine and bromine gases (523±94 Mt sulfur, 1200±156 Mt chlorine, and 2±0.46 Mt bromine). Using the Earth system model (ESM) of the Community Earth System Model version 2 (CESM2) coupled with the Whole Atmosphere Community Climate Model version 6 (WACCM6), we simulated the impacts of the sulfur- and halogen-rich Los Chocoyos eruption on the preindustrial Earth system. Our simulations show that elevated sulfate burden and aerosol optical depth (AOD) persists for 5 years in the model, while the volcanic halogens stay elevated for nearly 15 years. As a consequence, the eruption leads to a collapse of the ozone layer with global mean column ozone values dropping to 50 DU (80 % decrease) and leading to a 550 % increase in surface UV over the first 5 years, with potential impacts on the biosphere. The volcanic eruption shows an asymmetric-hemispheric response with enhanced aerosol, ozone, UV, and climate signals over the Northern Hemisphere. Surface climate is impacted globally due to peak AOD of >6, which leads to a maximum surface cooling of >6 K, precipitation and terrestrial net primary production decrease of >25 %, and sea ice area increases of 40 % in the first 3 years. Locally, a wetting (>100 %) and strong increase in net primary production (NPP) (>700 %) over northern Africa is simulated in the first 5 years and related to a southward shift of the Intertropical Convergence Zone (ITCZ) to the southern tropics. The ocean responds with pronounced El Niño conditions in the first 3 years that shift to the southern tropics and are coherent with the ITCZ change. Recovery to pre-eruption ozone levels and climate takes 15 years and 30 years, respectively. The long-lasting surface cooling is sustained by an immediate increase in the Arctic sea ice area, followed by a decrease in poleward ocean heat transport at 60∘ N which lasts up to 20 years. In contrast, when simulating Los Chocoyos conventionally by including sulfur and neglecting halogens, we simulate a larger sulfate burden and AOD, more pronounced surface climate changes, and an increase in column ozone. By comparing our aerosol chemistry ESM results to other supereruption simulations with aerosol climate models, we find a higher surface climate impact per injected sulfur amount than previous studies for our different sets of model experiments, since the CESM2(WACCM6) creates smaller aerosols with a longer lifetime, partly due to the interactive aerosol chemistry. As the model uncertainties for the climate response to supereruptions are very large, observational evidence from paleo archives and a coordinated model intercomparison would help to improve our understanding of the climate and environment response.