Fig 2 - uploaded by Sebastian Homuth
Content may be subject to copyright.
Mining authorizations in Germany (= yellow, last revision: 31. December 2011) for exploration for unconventional hydrocarbon deposits (ochre = regions with the basic geological conditions for formation of shale gas)
Source publication
http://www.umweltbundesamt.de/uba-info-medien/4346.html
Context in source publication
Context 1
... of the hydrocarbon provinces known in Germa- ny already contain approved or applied-for explora- tion fields for exploration of, and exploitation from, conventional and unconventional oil and gas depo- sits. Figure 2 shows the areas that contain (planned) activities for exploration for unconventional gas de- posits in Germany (BGR 2012). To our information, no permits have yet been issued for exploitation of natu- ral gas from unconventional shale gas and coal bed methane deposits. ...
Similar publications
Hydraulic fracture propagation has a great influence on reservoir reconstruction in shale gas exploitation. The study on mechanism of hydraulic fracture propagation is important. Based on the fluid-solid coupling theory, the propagation criterion under hydraulic pressure of shale is deduced in this paper. In combination with large-scale true triaxi...
The modern hydraulic fracturing technique was implemented in the oil and gas industry in the 1940s. Since then, it has been used extensively as a method of stimulation in unconventional reservoirs in order to enhance hydrocarbon recovery. Advances in directional drilling technology in shale reservoirs allowed hydraulic fracturing to become an exten...
Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural f...
Accurate prediction of the hoop stress distribution of the cement sheath and its variation regularities during volume hydraulic fracturing in shale formations is of great significance for maintaining the wellbore integrity of shale gas horizontal wells. A finite element model of casing-cement sheath-formation system (CCFS) coupling between stresses...
Citations
Hydraulic fracturing (HF) is currently the most widespread and effective method of oil production stimulation. The most commonly used fracturing fluid is crosslinked guar gels. However, when using these systems, problems such as clogging of the pore space, cracking, and proppant packing with the remains of the undestroyed polymer arise. Therefore, the efficiency of the hydraulic fracturing process decreases. In this work, compositions based on viscoelastic surfactants (VES) and synthetic polymers (SP) were considered as alternatives capable of minimizing these disadvantages. Most often, the possibility of using a composition as a fracturing fluid is evaluated using rotational viscometry. However, rotational viscometry is not capable of fully assessing the structural and mechanical properties of fracturing fluid. This leads to a reduced spread of systems based on VES and SP. This paper proposes an integrated approach to assessing the effectiveness of a water-based fracturing fluid. The proposed comprehensive approach includes an assessment of the main characteristics of water-based fracturing fluids, including an analysis of their structural and mechanical properties, which is based on a combination of rotational and oscillatory rheology and a comparative analysis of methods for studying the influence of fluids on the reservoir rock. The use of the developed approach to assess the technological properties of fracturing fluids makes it possible to demonstrate the potential applicability of new, unconventional fracturing fluids such as systems based on VES and SP.