Table 1 - uploaded by Fernanda M D Amaral
Content may be subject to copyright.
List of collection stations.

List of collection stations.

Source publication
Article
Full-text available
Based on specimens deposited in the scientific collections of the Reef Environment Laboratory of the Federal Rural University of Pernambuco, National Museum/Federal University of Rio de Janeiro, and Oceanography Department of the Federal University of Pernambuco, the first occurrences of the azooxanthellate scleractinians Polycyathus senegalensis a...

Context in source publication

Context 1
... specimens examined herein were collected by SCUBA diving or by bottom trawling throughout the Brazilian coast ( Figure 1; Table 1). Vouchers were deposited at the scientific collections of the Reef Environment Laboratory of the Federal Rural University of Pernambuco (LAR/UFRPE); National Museum/Federal University of Rio de Janeiro (MNRJ); and/ or Oceanographic Museum of the Pernambuco Federal University (MOUFPE). ...

Citations

... There are 63 species of azooxanthellate scleractinian corals in Brazil's EEZ, which include a mixture of species from shallow water (<200 m, Pires 2007;Cordeiro et al. 2014). ...
Chapter
In the region of Brazil, cold-water corals are distributed from the Equatorial to the Southern Brazilian margins and on nearby seamounts, mainly between 250 and 1200 m water depth, forming reefs, carbonate banks, and octocoral gardens. Larger reef structures formed by Lophelia pertusa are only known from the Southeast-Southern (SE-S) slope, with depth ranges limited by high temperatures (>12 °C) and the lower aragonite saturation state of lower bathyal water masses. Besides L. pertusa, three other reef-forming scleractinians occur in larger numbers, Solenosmilia variabilis, Enallopsammia rostrata, and Madrepora oculata. On the SE Brazilian continental margin, these species are associated with mounds formed by authigenic carbonates related to seabed pockmarks with active seepage. Particulate organic carbon flux may be important to the development of Brazilian scleractinian deep reefs, but Octocorallia and Antipatharia are apparently not restricted to similar environmental filtering as the calcifying species and are common at depths below 1200 m. The limited information on the ecology and economic importance of cold-water coral ecosystems in Brazil prevent any measure of economic losses associated with impacts by the deep-water fisheries and the offshore oil and gas industry. In the next decades, climate change effects will likely decrease habitat suitability for cold-water corals on the upper slope by changing patterns of primary productivity, with higher temperatures and decreased pH of the oceans. Brazil potentially harbors rich deep-water coral reefs similar to other provinces in the North Atlantic, but limited government investment and management will keep these treasures in the dark.
... One of the best represented groups adhered on consolidated substrate are the corals, which commonly occur in shallow waters, due to the luminosity and presence of nutrients, however, many groups can be observed in rocks or artificial substrata in deep regions with absence of light, as the example of corals azooxanthellate (Kitahara, 2007;Kitahara et al., 2008;Pires, 2007;Cordeiro et al., 2012Cordeiro et al., , 2015Zibrowius et al., 2017). The coral family Astrangiidae Milne Edwards & Haime, 1857 is represented by the only genus Astrangia Milne Edwards & Haime, 1848 with 35 valid species, widely reported in many habitats from the coastal zones to depths of 573 m (Zlatarski & Martínez-Estalella, 1982;Cairns et al., 1999;Cairns, 2000;Cordeiro et al., 2012;Hoeksema & Cairns, 2023). ...
... One of the best represented groups adhered on consolidated substrate are the corals, which commonly occur in shallow waters, due to the luminosity and presence of nutrients, however, many groups can be observed in rocks or artificial substrata in deep regions with absence of light, as the example of corals azooxanthellate (Kitahara, 2007;Kitahara et al., 2008;Pires, 2007;Cordeiro et al., 2012Cordeiro et al., , 2015Zibrowius et al., 2017). The coral family Astrangiidae Milne Edwards & Haime, 1857 is represented by the only genus Astrangia Milne Edwards & Haime, 1848 with 35 valid species, widely reported in many habitats from the coastal zones to depths of 573 m (Zlatarski & Martínez-Estalella, 1982;Cairns et al., 1999;Cairns, 2000;Cordeiro et al., 2012;Hoeksema & Cairns, 2023). In Brazilian waters, only two species are reported: Astrangia rathbuni Vaughan, 1906 andAstrangia solitaria (Le Sueur, 1817), being this last, occurring along the southeast United States, Gulf of Mexico, Caribbean Sea, and in some regions of northeast and southeast of Brazil (Cordeiro et al., 2012;Leão et al., 2016). ...
... The coral family Astrangiidae Milne Edwards & Haime, 1857 is represented by the only genus Astrangia Milne Edwards & Haime, 1848 with 35 valid species, widely reported in many habitats from the coastal zones to depths of 573 m (Zlatarski & Martínez-Estalella, 1982;Cairns et al., 1999;Cairns, 2000;Cordeiro et al., 2012;Hoeksema & Cairns, 2023). In Brazilian waters, only two species are reported: Astrangia rathbuni Vaughan, 1906 andAstrangia solitaria (Le Sueur, 1817), being this last, occurring along the southeast United States, Gulf of Mexico, Caribbean Sea, and in some regions of northeast and southeast of Brazil (Cordeiro et al., 2012;Leão et al., 2016). ...
Article
Full-text available
Ecological associations are widely reported in literature, covering several levels in the trophic chain or with different species interaction. However, the epibiosis between coral and gastropod species is still rarely observed in Brazil. Based on that, herein we report the epibiosis between the coral species Astrangia solitaria (Le Sueur, 1817) and the gastropod Turbinella laevigata Anton, 1838, additionally, extending the distribution of A. solitaria from the northern Brazilian coast (State of Amapá). The species were collected as bycatch fauna during commercial fishing operations along the continental shelf of Amapá, under the supervision of Center for Research and Management of Fisheries Resources of the North Coast (CEPNOR). This paper increases the northernmost record of A. solitaria and expands its epibiosis interaction with T. laevigata.
... Each specimen was identified to species level according to skeleton morphology. The following taxonomic references were used: Cairns (1984Cairns ( , 1989Cairns ( , 1991Cairns ( , 1994Cairns ( , 1995Cairns ( , 1999Cairns ( , 2000Cairns ( , 2001Cairns ( , 2004, Cairns and Parker (1992), Cairns and Zibrowius (1997), Cairns and Kitahara (2012), Cairns and Polonio (2013), Araya et al. (2016), Arrigoni et al. (2014), Altuna (2013), Altuna and Ríos (2014), Cordeiro et al. (2012), Song (2014, 2016), Lam et al. (2008), Qurban et al. (2020), Kitahara (2007), Kitahara andCairns (2008, 2021), Kitahara et al. (2010), Tachikawa (2005) and Zibrowius and Gili (1990). Taxonomic names were checked against the World Register of Marine Species (WoRMS, http://www.marinespecies. ...
Article
Scleractinian cold-water corals (CWCs) are one of the most important habitat engineers of the deep sea. Although the South China Sea (SCS) abuts the biodiversity center of scleractinian CWCs in the western Pacific, only a few sporadic records are available. We discovered new CWC sites by means of trawl sampling and video observation along the continental shelf of the northwestern SCS. All trawled scleractinian CWC specimens were identified to species level according to skeleton morphology and structure. The living CWCs and associated fauna recorded in the video were -identified to a higher level of classification. Scleractinian corals were identified to genus level, while non-scleractinian CWCs were identified to family level and given general names such as gorgonian corals, bamboo corals and black corals. Associated benthic dwellers were divided into major categories. A total of 28 scleractinian CWC species were identified to 7 families, 15 genera, and 1 additional subgenus. Among them, 13 species were colonial, including important habitat-forming species in the genera Eguchipsammia, Dendrophyllia and Cladopsammia. Non-scleractinian CWCs were identified to 7 families, including 4 families gorgonian corals, 1 family bamboo corals, and 2 families black corals. Gorgonian corals were the most abundant non-scleractinian CWCs in this region. Meanwhile, starfish, sea anemones, fish, gastropods, echinoderms, and other associated benthic fauna were recorded in the CWC habitats, with starfish belonging to the order Brisingida being most common. New scleractinian CWC assemblages were discovered along the continental seabed mounds in the northwestern SCS. This study highlights the remarkable diversity of cold-water scleractinian corals in the whole SCS, and shows the potential widespread distribution and conservation prospect of CWC habitats in this region.
... However, there are fewer studies that have focused on deep-sea corals in the Southern Hemisphere compared to those in the Northern Hemisphere. Although studies have been conducted on the Brazilian coast (Viana et al., 1998;Le Goff-Vitry et al., 2004;Pires et al., 2004;Sumida et al., 2004;Castro et al., 2006;Kitahara, 2007;Pires, 2007;Arantes et al., 2009;Kitahara et al., 2009;Cordeiro et al., 2012;Bahr et al., 2020), most have focused on specific taxa or on a compilation of azooxanthellate stony corals, and no studies have focused on maintaining deep-sea corals in the laboratory and subsequent experimentation. ...
... Totaling more than 3.6 mi km 2 , Brazil has one of the largest Exclusive Economic Zones in the world (EEZ), but efforts to identify deep-sea coral ecosystems/habitats and, consequently diversity, have been scarce. Furthermore, the vast majority of such efforts are concentrated in the Southeastern and Southern Brazilian EEZ, mirroring the activity of oil and gas, and fishing industries (Arantes et al., 2009;Kitahara, 2009;Cordeiro et al., 2012). For instance, while 32 deep-sea octocoral species are reported from Campos Basin (BC, 21-23 � S) (Arantes et al., 2009), only six are known from the Potiguar Basin slope (BPot, 4-5 � S) (Bayer et al., 2015;Cordeiro et al., 2015a;Gondim et al., 2015). ...
Article
Deep-sea coral communities are poorly known in the Southwestern Atlantic (SWA), particularly in the equatorial/subequatorial latitudes embraced by the northeastern Brazilian Exclusive Economic Zone (EEZ). Such knowledge gap has lead to the idea that the latter has low species richness when compared to southern Brazilian regions. Recent studies, however, indicate the northeastern slope as highly suitable for deep-sea coral habitats. Herein, based on recent sampling efforts, we confirm that deep-sea coral richness in that region is higher than previously thought. Trawl surveys carried out in 2011 at the Potiguar Basin, Rio Grande do Norte State, yielded the identification of at least 51 coral species, including 28 octocorals, 16 scleractinians, and seven antipatharians, including five new records for the South Atlantic and 11 new occurrences for the northeastern Brazilian waters. Comprising 29 species, the upper slope communities (102–200 m) showed the highest richness. Species richness between northeastern and southern Brazil is briefly compared, indicating a decrease of species richness southwards. Since most of the studied area is under influence of the same water masses, proximity to the Caribbean fauna may explain the species richness found in the northern Brazilian external shelf and slope. Finally, we suggest that biogeographic units within the Brazilian upper and middle slope are closer to shallow-water provinces than to deep-sea ones.
... Finally, we have noticed the occurrence, on both sides of the SAO, of reefs at even greater depths (>150 m depth), reaching below the mesophotic zone. These deeper formations have also received little scientific attention (Soares, Lotufo, et al., 2017) and are probably distinct and ecologically apart from the shallow and mesophotic ecosystems (Hovland, 2008), being formed by ecosystem engineers, such as corals Lophelia pertusa, Madrepora oculata and Solenosmilia variabilis (Cordeiro, Kitahara, & Amaral, 2012;Kitahara, 2007). It is outside the scope of this study to discuss these deeper marine animal forests; however, a review of their distribution and conservation status is urgently needed, since they are also vulnerable to human pressures, such as those caused by the fishing industry (Kitahara, 2009;Soares, Lotufo, et al., 2017). ...
Article
Full-text available
Aim: This study reviews recent research on the South Atlantic Mesophotic ecosys- tems (MEs) and the pressures threatening them, and offers suggestions for their management and conservation. Location: The South Atlantic Ocean. Methods: A comprehensive compilation of the scientific literature was performed to examine the distribution, human impacts and conservation status of the South Atlantic MEs. Results: Our review indicated that the South Atlantic Ocean (SAO) is one of the major MEs areas in the world’s oceans. The South Atlantic MEs are composed of a mosaic of distinct seascapes, mainly rhodolith beds, mesophotic reefs (i.e., rocky and bio- genic) and marine animal forests (e.g., sponge aggregations, octocoral and black coral forests) that occur along the East South American and West African coasts, sea- mounts and oceanic islands. Throughout the SAO, the distinct seascapes of MEs are usually formed on the middle and outer continental shelves, shelf-edge, seamounts, submarine canyons, incised valleys and paleochannels, reef structures and insular shelves. We highlighted sea temperature anomalies, ocean acidification, extreme floods and droughts, fisheries, invasive species, marine debris, mining, and oil and gas exploitation as major threats to these ecosystems. Main conclusions: Given the threats to the South Atlantic MEs, growing human pres- sures may degrade these ecosystems in the next years and undermine their unique biodiversity as well as their potential to provide connectivity between regions and depths. Our review revealed the existence of some extensive and unprotected for- mations, which urgently demand in-depth investigations and conservation action. KEYWORDS climate change, coral reef, deep-sea refugia, marine biogeography, marine conservation, rhodolith bed
... Muito deste conhecimento pode ser atribuído à atividade pesqueira, de onde vieram os primeiros registros há mais de 200 anos ), e à tecnologia empregada na exploração de hidrocarbonetos, que revelou as primeiras imagens de recifes de L. pertusa na costa da Noruega na década de 1980 (Hovland, 2008). No entanto, no Atlântico Sul e de forma mais abrangente para todo o Hemisfério Sul, o conhecimento desses ecossistemas é deficitário, com exceção de áreas específicas no entorno da Nova Zelândia e da Austrália (Rogers, 1999), na costa de Angola (Le Guilloux et al., 2009), do Uruguai (Carranza et al., 2012) e do Brasil (viana et al., 1998Le Goff--vitry et al., 2004;Pires et al., 2004;Sumida et al., 2004;Castro et al., 2006;Kitahara, 2007;Pires, 2007;Arantes et al., 2009;Kitahara et al., 2009;Cordeiro et al., 2012). Dentre estes são poucos os estudos de ecossistemas de corais de águas profundas para o Atlântico Sul que utilizam levantamentos geofísicos (viana et al., 1998;Le Guilloux et al., 2009;Carranza et al., 2012) quando comparado ao Atlântico Norte, onde vários trabalhos publicados documentam a ocorrência de recifes ) e bancos carbonáticos de corais (Wheeler et al., 2007;Correa et al., 2012a, b) ao longo das margens continentais de diversos países. ...
Chapter
Existem aproximadamente 5.100 espécies de corais conhecidas e mais da metade destas ocorre em profundidades superiores a 50 m e, preferencialmente, numa faixa de temperatura entre 4 e 12 °C (Cairns, 2007; Roberts et al., 2009). Desta forma, os corais que frequentemente são associados a ambientes de águas rasas tropicais podem ser vistos primeiramente como habitantes de águas profundas ou frias (Roberts et al., 2009). Os táxons Scleractinia, Antipatharia, Octocorallia e Stylasteridae são os principais representantes dos corais de águas profundas, podendo ser encontrados em todos os oceanos, com exceção de algumas regiões polares (Freiwald et al., 2004), e abrangendo ampla faixa de profundidade (Hatcher e Scheibling, 2001). Estes organismos não possuem associações simbiônticas com algas (são azooxantelados) e se alimentam, principalmente, de zooplâncton, fitodetritos e matéria orgânica em suspensão na coluna d’água (Rogers, 1999; Roberts et al., 2006). As larvas de algumas espécies de corais de águas profundas requerem substrato rígido para assentar, o crescimento das colônias é lento e sua distribuição normalmente está associada a elevações no fundo marinho (Wilson, 1979; Mortensen et al., 1995; Rogers, 1999; Roberts et al., 2006). Somente algumas espécies coloniais de corais de águas profundas formam estruturas tridimensionais conhecidas como recifes ou bancos carbonáticos de corais (coral carbonate mounds) (Roberts et al., 2009). As principais espécies formadoras são Lophelia pertusa, Madrepora oculata, Enallopsammia profunda, Goniocorella dumosa, Solenosmilia variabilis e Oculina varicosa (Wilson, 1979; Roberts et al., 2009). Dentre estas, L. pertusa é a que apresenta distribuição mais ampla, ocorrendo nos oceanos Pacífico, Atlântico e Índico em uma faixa latitudinal de 51° S a 71° N. Esta espécie também possui ampla distribuição batimétrica, com registros de ocorrência entre 39 e 3.383 m; entretanto os recifes formados por Lophelia pertusa são encontrados entre 200 e 1.000 m de profundidade, com algumas exceções (Rogers, 1999; Freiwald et al., 2004; Roberts et al., 2009). Recifes de corais de águas profundas são estruturas controladas por processos erosivos que formam elevações topográficas que podem alterar regimes hidrodinâmicos e sedimentares locais (Roberts et al., 2009). Sua complexidade estrutural serve de habitats para muitas espécies de invertebrados e peixes, que encontram as condições ideais para assentamento, crescimento e reprodução (Freiwald et al., 2004). Em escala geológica, a alternância de esqueletos e cascalhos de corais com sedimento lamoso pode ser responsável pela formação de estruturas com relevo positivo no fundo marinho definidas como bancos carbonáticos de corais de águas profundas, os quais podem apresentar na sua porção superficial colônias de corais vivas ou mortas, tornando-se locais preferenciais para a formação de novos recifes (Roberts et al., 2009). Até poucos anos atrás, o conhecimento destes ecossistemas era baseado nas informações obtidas por meio de técnicas tradicionais de amostragem de mar profundo (arrastos, dragas e pegadores). Redes e dragas são utilizadas amplamente, mas são destrutivas, semiquantitativas e danificam o material, que é de estrutura frágil e crescimento lento (Rogers, 1999). O uso de métodos geofísicos como o sonar de varredura lateral, ecobatímetro multifeixe e sísmica, para mapeamento indireto dos bancos de corais, e o uso de veículos de operação remota (Remotely Operated Vehicle – ROV) e submersíveis tripulados, para a obtenção de imagens, têm permitido o estudo desses ambientes remotos conservando a integridade dos mesmos (Hovland e Mortensen, 1999; Mortensen et al., 2000; Hovland et al., 2002). O mapeamento de ecossistemas de corais de águas profundas inicia-se preferencialmente por meio dos levantamentos geofísicos em busca de regiões de maior refletividade no fundo do mar (Fosså et al., 2005). A partir da delimitação de alvos refletivos nos registros geofísicos pode ser feito um direcionamento para investigações mais detalhadas utilizando equipamentos como ROVs para confirmar a existência dos bancos e verificar suas características. Estes autores ainda apontam que a alta refletividade pode tanto indicar a presença de formações carbonáticas na superfície quanto em subsuperfície (Fosså et al., 2005). Por razões históricas e econômicas, o Atlântico Norte é uma região onde há o maior conhecimento sobre esses ambientes dentre todos os oceanos (Roberts et al., 2006). Muito deste conhecimento pode ser atribuído à atividade pesqueira, de onde vieram os primeiros registros há mais de 200 anos (Roberts et al., 2009), e à tecnologia empregada na exploração de hidrocarbonetos, que revelou as primeiras imagens de recifes de L. pertusa na costa da Noruega na década de 1980 (Hovland, 2008). No entanto, no Atlântico Sul e de forma mais abrangente para todo o Hemisfério Sul, o conhecimento desses ecossistemas é deficitário, com exceção de áreas específicas no entorno da Nova Zelândia e da Austrália (Rogers, 1999), na costa de Angola (Le Guilloux et al., 2009), do Uruguai (Carranza et al., 2012) e do Brasil (Viana et al., 1998; Le Goff-Vitry et al., 2004; Pires et al., 2004; Sumida et al., 2004; Castro et al., 2006; Kitahara, 2007; Pires, 2007; Arantes et al., 2009; Kitahara et al., 2009; Cordeiro et al., 2012). Dentre estes são poucos os estudos de ecossistemas de corais de águas profundas para o Atlântico Sul que utilizam levantamentos geofísicos (Viana et al., 1998; Le Guilloux et al., 2009; Carranza et al., 2012) quando comparado ao Atlântico Norte, onde vários trabalhos publicados documentam a ocorrência de recifes (Roberts et al., 2009) e bancos carbonáticos de corais (Wheeler et al., 2007; Correa et al., 2012a, Correa et al., 2012b) ao longo das margens continentais de diversos países. Apesar do registro de corais de águas profundas vivos ou mortos ao longo da costa brasileira, a maioria das publicações está relacionada com táxons específicos ou fornecem a compilação de registros de corais pétreos azooxantelados, obtidos tanto por métodos tradicionais de amostragem ou pela captura incidental durante a atividade de pesca industrial (Kitahara, 2007; Pires 2007). Além disso, apenas dois trabalhos publicados descrevem a ocorrência de bancos de corais de águas profundas para a margem continental brasileira, mas especificamente para as bacias de Campos (Viana et al., 1998) e de Santos (Sumida et al., 2004), ambas na Região Sudeste do país. Os trabalhos de Laborel (1969) e Cairns, 1979, Cairns, 2000 contribuíram para o conhecimento de corais azooxantelados, entre os quais só algumas espécies são formadoras de recifes ou bancos. O programa do governo brasileiro “Avaliação do potencial sustentável dos recursos da Zona Econômica Exclusiva (REVIZEE)”, desenvolvido entre 1997 e 2007, promoveu várias campanhas na plataforma e no talude que também geraram registros de antozoários (Pires et al., 2004), incluindo a Região Sudeste do Brasil e parcialmente a região da Bacia de Campos (Castro et al., 2006). Sumida et al. (2004) investigaram depressões no talude da Bacia de Santos e obtiveram amostras, através de dragas, que consistiam em sedimentos lamosos misturados com cascalho de coral e outros invertebrados, não sendo registrados corais vivos. Outros registros de corais de águas profundas foram obtidos através do Programa de Observadores de Bordo em Embarcações Arrendadas (PROA) relacionado com a indústria pesqueira que opera arrastos de fundo, principalmente nas Regiões Sul e Sudeste do Brasil (Kitahara, 2009). Nos últimos anos, estudos taxonômicos também registraram a ocorrência de antozoários na costa do estado do Rio de Janeiro, entre eles: Antipatharia (Loiola and Castro, 2001), Isididae (Medeiros, 2005), Anthothelinae (Arantes e Medeiros, 2006). Revisões detalhadas da fauna de corais azooxantelados e sua distribuição na costa brasileira foram feitas por Kitahara (2007) e Pires (2007). Especificamente na Bacia de Campos, Viana et al. (1998) descreveram, com foco geológico e oceanográfico, a ocorrência de bancos de corais de águas profundas a partir de avaliações geofísicas. De acordo com estes autores, estas formações ocorrem de forma concentrada entre 570 e 850 m, em coincidência com a região do talude banhada pela porção superior da Água Intermediária Antártica (AIA). Arrastos de fundo com redes de portas realizados com fim científico em regiões com lâmina d´água entre 1.100 e 1.600 m coletaram incidentalmente espécies de corais pétreos e octocorais, principalmente na isóbata de 1.100 m, apesar das regiões com obstáculos naturais terem sido evitadas (Lavrado et al., 2010). Além destes estudos, outras importantes iniciativas coordenadas pelo Centro de Pesquisas da Petrobras (Cenpes) em parceria com universidades e empresas nacionais têm expandido o conhecimento desses ecossistemas na zona econômica exclusiva brasileira. Desta forma, o presente trabalho apresenta os resultados de dois projetos concebidos para mapear e caracterizar os ecossistemas de corais de águas profundas da Bacia de Campos (Caracterização de Corais de Águas Profundas da Bacia de Campos – CAP-BC e Ecossistemas de Corais de Águas Profundas – ECOPROF), analisando seus aspectos físicos (geológicos e oceanográficos) e biológicos (biodiversidade), sendo o primeiro na margem continental brasileira e no Atlântico Sudoeste a usar imagens de ROVs associadas a dados geofísicos, geológicos e oceanográficos para descrever esses ecossistemas, em especial avaliando a eficiência dos métodos indiretos (geofísicos) e diretos (ROVs) no mapeamento, distribuição espacial e batimétrica dos mesmos.
... The Brazilian Province, also referred to as the Southwestern Atlantic (SWA), extends from the mouth of the Amazon River to the state of Santa Catarina in southern Brazil, and includes the oceanic islands of Atol das Rocas, Trindade and Martin Vaz, Fernando de Noronha Archipelago, and St. Peter and St. Paul Rocks (Briggs and Bowen 2012). Recent taxonomic and geographic range revisions indicate that the Brazilian Province hosts 18 species of zooxanthellate scleractinian corals (Castro and Pires 2001;Neves et al. 2006Neves et al. , 2008Neves et al. , 2010Nunes et al. 2008;Budd et al. 2012), 63 azooxanthellate scleractinians (Kitahara 2007;Pires 2007;Neves and Johnsson 2009;Cordeiro et al. 2012) and four species of fire coral (Hydrozoa: Milleporidae; Amaral et al. 2008). Among these, six scleractinians (Mussismilia braziliensis, M. harttii, M. hispida, M. leptophylla, Meandrina brasiliensis, and Siderastrea stellata) and three fire corals (Millepora braziliensis, M. nitida, and M. laboreli) are considered shallow-water endemic species of the Brazilian Province (Laborel 1969a, b;Leão et al. 2003;Amaral et al. 2008;Pinzón and Weil 2011), and one additional scleractinian species (Favia gravida) is found only in the Brazilian, Ascension, and Tropical Eastern Atlantic provinces; Hoeksema 2012). ...
Article
Full-text available
Fire corals are the only branching corals in the South Atlantic and provide an important ecological role as habitat-builders in the region. With three endemic species (Millepora brazilensis, M. nitida and M. laboreli) and one amphi-Atlantic species (M. alcicornis), fire coral diversity in the Brazilian Province rivals that of the Caribbean Province. Phylogenetic relationships and patterns of population genetic structure and diversity were investigated in all four fire coral species occurring in the Brazilian Province to understand patterns of speciation and biogeography in the genus. A total of 273 colonies from the four species were collected from 17 locations spanning their geographic ranges. Sequences from the 16S ribosomal DNA (rDNA) were used to evaluate phylogenetic relationships. Patterns in genetic diversity and connectivity were inferred by measures of molecular diversity, analyses of molecular variance, pairwise differentiation, and by spatial analyses of molecular variance. Morphometrics of the endemic species M. braziliensis and M. nitida were evaluated by discriminant function analysis; macro-morphological characters were not sufficient to distinguish the two species. Genetic analyses showed that, although they are closely related, each species forms a well-supported clade. Furthermore, the endemic species characterized a distinct biogeographic barrier: M. braziliensis is restricted to the north of the São Francisco River, whereas M. nitida occurs only to the south. Millepora laboreli is restricted to a single location and has low genetic diversity. In contrast, the amphi-Atlantic species M. alcicornis shows high genetic connectivity within the Brazilian Province, and within the Caribbean Province (including Bermuda), despite low levels of gene flow between these populations and across the tropical Atlantic. These patterns reflect the importance of the Amazon–Orinoco Plume and the Mid-Atlantic Barrier as biogeographic barriers, and suggest that, while M. alcicornis is capable of long-distance dispersal, the three endemics have restricted ranges and more limited dispersal capabilities.
... Campos Basin covers more than 100,000 km 2 between the Vitória High (20.5°S) and the Cabo Frio High (24°S) on the Brazilian continental margin. Over 70 % of it lies in depths >200 m [13], and over 85 % of Brazilian crude oil and gas originates from this region. In 2003 PETRO-BRAS initiated a series of research projects for assessing environmental baseline data. ...
Article
Full-text available
Deep-sea reefs and coral banks are increasingly known as highly biodiverse ecosystems where sponges constitute a significant proportion of builders and inhabitants. Albeit smaller in dimensions, Campos Basin coral mounds also harbor a rich associated fauna, whence only 16 species of sponges had been fully identified this far. Seven new species are described here, viz. Geodia garoupa sp. nov., Vulcanella stylifera sp. nov., Trachyteleia australis sp. nov., Echinostylinos brasiliensis sp. nov., Xestospongia kapne sp. nov., Sympagella tabachnicki sp. nov., and Leucopsacusbarracuda sp. nov. Of the 24 species of sponges known from the area, only seven were found elsewhere too, thus suggesting a possible high endemism in Campos Basin. Nevertheless, the widespread occurrence of deep reef-framework building corals along a large sector of the Brazilian coast suggests these habitats and their associated fauna may be more widespread than currently appreciated. Echinostylinos patriciae nom. nov. is proposed for the New Zealand record of E. reticulatus.
... Bayer 1959, Castro et al. 2006, Arantes et al. 2009, Pérez et al. 2011, Arantes and Loiola 2014 and 80 scleractinian species (cf. Leão et al. 2003, Cordeiro et al. 2012). Indeed, most species of azooxanthellate scleractinians off Brazil are found in waters >30 m, with only approximately 15% of species found in shallower waters (Kitahara 2007, Pires 2007. ...
... Many of these purported disjunct distributions may actually be the result of lower sampling effort in comparison to studies off northeastern and southeastern Brazil (Castro and Segal 2001, Silva and Pérez 2002, Castro et al. 2006, Cordeiro et al. 2012, as most of the coral species we listed offshore of the Amazon River are also found in the Caribbean Sea (Table 2). ...
Article
Full-text available
Since the 1960s, it has been accepted that the distribution of reef-building corals off Brazil has its northernmost limit at the Manuel Luis Marine State Park (approximately 0°46´S, 44°15´W), about 530 km south of the Amazon River mouth. In the present study, we challenge this view and report a geographic extension of coral distribution of over 550 km to the north (to 02°13´48˝N and 48°10´12˝W). The Amazon River is believed to be the greatest barrier to the distribution of marine species between Brazilian and Caribbean waters. After examining specimens deposited in museums and documented in scientific literature, we recorded 38 coral species offshore of the Amazon River mouth, including 27 octocorals, 9 scleractinians, 1 hydrocoral, and 1 black coral. Corals were found at depths between 18 and 125 m, providing evidence of mesophotic coral ecosystems adjacent to the mouth of Amazon River, which raises important questions about the origin and connectivity between populations of reef organisms off Brazil and those in the Caribbean region.