Figure - available from: Mathematische Zeitschrift
This content is subject to copyright. Terms and conditions apply.
If a knot K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} can be obtained from K by mH(n)-moves, then K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} can also be obtained from K by m(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(n-1)$$\end{document}H(2)-moves, each of which is realized by the attaching of a noncoherent band. If the roots of the bands are gathered as shown, the totality of all m(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(n-1)$$\end{document} band moves is accomplished by a single H(m(n-1)+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(m(n-1)+1)$$\end{document}-move, the one inside the dashed oval. Observe that the number of arcs (colored in red in a) inside the dashed oval equals 1 plus the number of bands

If a knot K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} can be obtained from K by mH(n)-moves, then K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} can also be obtained from K by m(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(n-1)$$\end{document}H(2)-moves, each of which is realized by the attaching of a noncoherent band. If the roots of the bands are gathered as shown, the totality of all m(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(n-1)$$\end{document} band moves is accomplished by a single H(m(n-1)+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(m(n-1)+1)$$\end{document}-move, the one inside the dashed oval. Observe that the number of arcs (colored in red in a) inside the dashed oval equals 1 plus the number of bands

Source publication
Article
Full-text available
We define a broad class of graphs that generalize the Gordian graph of knots. These knot graphs take into account unknotting operations, the concordance relation, and equivalence relations generated by knot invariants. We prove that overwhelmingly, the knot graphs are not Gromov hyperbolic, with the exception of a particular family of quotient knot...

Similar publications

Article
Full-text available
The spectral closeness of a graph $G$ is defined as the spectral radius of the closeness matrix of $G$, whose $(u,v)$-entry for vertex $u$ and vertex $v$ is $2^{-d_G(u,v)}$ if $u\not= v$ and $0$ otherwise, where $d_G(u,v)$ is the distance between $u$ and $v$ in $G$. The residual spectral closeness of $G$ is defined as the minimum spectral closeness...
Preprint
Full-text available
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider the proximity graph of a set of $n$ disks in the plane of arbitrary radii: In this graph two disks are connected if the distance between them is at most some threshold parameter $r$. The case of intersection graphs is a special case with $r=0$. We gi...
Article
Full-text available
A graph G is undirected with V vertices and E edges. This study introduces radial radio mean labelling of graphs, a novel method of graph labelling. A radial radio mean labelling of the undirected graph G is a function g : V(G) → {1, 2, …, n} that satisfies the requirement g(u) + g(v)/2 between any two nodes u, v belongs to G and r(G) is the radius...
Article
Full-text available
In this paper, we determine the graphs which have the minimal spectral radius among all the connected graphs of order n and the independence number ⌈n2⌉-1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsi...
Preprint
Full-text available
We introduce and explore a new concept of scattered subspace with respect to a collection of subspaces sharing a common dimension, most notably partial spreads. We show that this concept generalises known notions of subspace scatteredness. We establish various upper bounds for the dimension of a scattered subspace with respect to arbitrary partial...

Citations

Article
We study the C P 2 \mathbb {CP}^2 -slicing number of knots, i.e. the smallest m ≥ 0 m\geq 0 such that a knot K ⊆ S 3 K\subseteq S^3 bounds a properly embedded, null-homologous disk in a punctured connected sum ( # m C P 2 ) × (\#^m\mathbb {CP}^2)^{\times } . We find knots for which the smooth and topological C P 2 \mathbb {CP}^2 -slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth C P 2 \mathbb {CP}^2 -slicing number of a knot in terms of its double branched cover and an upper bound on the topological C P 2 \mathbb {CP}^2 -slicing number in terms of the Seifert form.
Preprint
Full-text available
We study the CP2\mathbb{CP}^2-slicing number of knots, i.e. the smallest m0m\geq 0 such that a knot KS3K\subseteq S^3 bounds a properly embedded, null-homologous disk in a punctured connected sum (#mCP2)×(\#^m\mathbb{CP}^2)^{\times}. We give a lower bound on the smooth CP2\mathbb{CP}^2-slicing number of a knot in terms of its double branched cover, and we find knots with arbitrarily large but finite smooth CP2\mathbb{CP}^2-slicing number. We also give an upper bound on the topological CP2\mathbb{CP}^2-slicing number in terms of the Seifert form and find knots for which the smooth and topological CP2\mathbb{CP}^2-slicing numbers are both finite, nonzero, and distinct.