Copy reference, caption or embed code
- Stokes Manifolds and Cluster Algebras
![Here the triangulation T of the hexagon and the variables yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j$$\end{document} assigned to the relevant edges induce the Dynkin diagram with variables κ1,κ2,κ3,κ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _1, \kappa _2, \kappa _3, \kappa _4$$\end{document} in blue](https://www.researchgate.net/publication/357897616/figure/fig5/AS:1129734528348161@1646361109659/Here-the-triangulation-T-of-the-hexagon-and-the-variables-yjdocumentclass12ptminimal_Q320.jpg)
Here the triangulation T of the hexagon and the variables yj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j$$\end{document} assigned to the relevant edges induce the Dynkin diagram with variables κ1,κ2,κ3,κ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _1, \kappa _2, \kappa _3, \kappa _4$$\end{document} in blue
Reference
Caption
Embed code