Figure 3 - uploaded by Aaron Mavrinac
Content may be subject to copyright.
Source publication
1 It is desirable for automated object recognition using computer vision systems to emulate the human capacity for recognition of shapes invariant to vari-ous transformations. We present an algorithm, based on a Fuzzy Associative Database approach, which uses appropriately invariant metrics and a neu-ro-fuzzy inference method to accurately classify...
Similar publications
Food image recognition is one of the promising applications of visual object recognition in computer vision. In this study, a small-scale dataset consisting of 5822 images of ten categories and a five-layer CNN was constructed to recognize these images. The bag-of-features (BoF) model coupled with support vector machine was first tested as comparis...
Learning from 3D Data is a fascinating idea which is well explored and studied in computer vision. This allows one to learn from very sparse LiDAR data, point cloud data as well as 3D objects in terms of CAD models and surfaces etc. Most of the approaches to learn from such data are limited to uniform 3D volume occupancy grids or octree representat...
Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Despite the significant performance improvement using the deep structures, they still require prohibitive runtime to process images and maintain the highest possible performance for real-time applications. Observing th...
Human activity recognition has been a significant goal of computer vision since its inception and has developed considerably in the last years. Recent approaches to this problem increasingly favour the use of data-driven deep learning methods. To facilitate the comparison of these methods, several datasets pertaining to labelled human activity have...
This paper proposes a new approach in object recognition to assist visually impaired people. This approach achieved accuracy rates higher than the approaches proposed by the authors of the selected datasets. We applied Data Augmentation with other techniques and adjustments to different Pre-trained CNNs (Convolutional Neural Networks). The ResNet-5...