Functional and biomechanical recovery of skin following suture closure and LASE sealing in Balb/c mice. (a) Photothermal response of LASE‐skin interface during in vivo sealing irradiated using a continuous wave NIR laser tuned to 808 nm at a laser power density of ~5.1 W/cm². The region shaded in light blue color (temperature range from ~50°C to ~60°C) indicates the optimal temperature window for laser tissue sealing. The photothermal response curve shows data that are a mean of n = 3 independent experiments. (b) Representative images of 1‐cm long skin incisions closed with four, simple interrupted 4‐0 nylon sutures or LASE on Days 0 (immediately after closure), 2, 4, and 7 postwounding; control is unwounded skin surgically prepared similarly to incised skin. (c) Representative image showing three approximate locations at which TEWL measurements were carried out (white arrows) for each type of closure method. (d) Transepidermal water loss (TEWL) of healed skin and unwounded control skin on Days 2, 4, and 7 postwounding. TEWL value (in g/m² h) for each incision type is the average TEWL measurement from three nonoverlapping spots over the incision line shown in b. Data shown are mean ± standard error of the mean of n = 6 mice. (e) Ultimate tensile strength (UTS) and recovery, that is, %UTS of intact skin strength (secondary axis shown in red) of healed skin on Days 2 and 7 postwounding for suture‐closed and LASE‐sealed incisions. Data shown are mean ± standard error of the mean of n = 6 mice. Statistical significance was determined using two‐way ANOVA followed by Fisher's LSD test and individual p values are shown; p < 0.05 are considered statistically significant.

Functional and biomechanical recovery of skin following suture closure and LASE sealing in Balb/c mice. (a) Photothermal response of LASE‐skin interface during in vivo sealing irradiated using a continuous wave NIR laser tuned to 808 nm at a laser power density of ~5.1 W/cm². The region shaded in light blue color (temperature range from ~50°C to ~60°C) indicates the optimal temperature window for laser tissue sealing. The photothermal response curve shows data that are a mean of n = 3 independent experiments. (b) Representative images of 1‐cm long skin incisions closed with four, simple interrupted 4‐0 nylon sutures or LASE on Days 0 (immediately after closure), 2, 4, and 7 postwounding; control is unwounded skin surgically prepared similarly to incised skin. (c) Representative image showing three approximate locations at which TEWL measurements were carried out (white arrows) for each type of closure method. (d) Transepidermal water loss (TEWL) of healed skin and unwounded control skin on Days 2, 4, and 7 postwounding. TEWL value (in g/m² h) for each incision type is the average TEWL measurement from three nonoverlapping spots over the incision line shown in b. Data shown are mean ± standard error of the mean of n = 6 mice. (e) Ultimate tensile strength (UTS) and recovery, that is, %UTS of intact skin strength (secondary axis shown in red) of healed skin on Days 2 and 7 postwounding for suture‐closed and LASE‐sealed incisions. Data shown are mean ± standard error of the mean of n = 6 mice. Statistical significance was determined using two‐way ANOVA followed by Fisher's LSD test and individual p values are shown; p < 0.05 are considered statistically significant.

Source publication
Article
Full-text available
Injuries caused by surgical incisions or traumatic lacerations compromise the structural and functional integrity of skin. Immediate approximation and robust repair of skin are critical to minimize occurrences of dehiscence and infection that can lead to impaired healing and further complication. Light‐activated skin sealing has emerged as an alter...

Citations

Article
Metabolites are not only involved in energy pathways but can also act as signaling molecules. Herein, we demonstrate that polyesters of alpha-ketoglutararte (paKG) can be generated by reacting aKG with aliphatic diols of different lengths, which release aKG in a sustained manner. paKG polymer-based microparticles generated via emulsion-evaporation technique lead to faster keratinocyte wound closures in a scratch assay test. Moreover, paKG microparticles also led to faster wound healing responses in an excisional wound model in live mice. Overall, this study shows that paKG MPs that release aKG in a sustained manner can be used to develop regenerative therapeutic responses.