Figure - available from: Cellular and Molecular Neurobiology
This content is subject to copyright. Terms and conditions apply.
Frequency–response curves to transmural electrical stimulation in rat superior MA with intact PVAT (+ PVAT) and removed PVAT (- PVAT), before and after their incubation with melatonin (MEL). Values represent the mean ± SEM of 9 rats. *p < 0.05 arterial preparations with PVAT intact vs. PVAT removed (before melatonin incubation); +p < 0.05 before vs. after melatonin incubation (arteries without PVAT)
Source publication
Melatonin is released by the pineal gland and can modulate cardiovascular system function via the G protein-coupled melatonin receptors MT1 and MT2. Most vessels are surrounded by perivascular adipose tissue (PVAT), which affects their contractility. The aim of our study was to evaluate mRNA and protein expression of MT1 and MT2 in the mesenteric a...
Citations
The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin’s lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect. Does melatonin have blood pressure-lowering effects, and are nocturnal animals suitable for testing the hypotensive effects of melatonin? The hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement method, route, time and duration of melatonin administration.
Melatonin is a simple compound with a proper chemical name N-acetyl-5-methoxy tryptamine and known as a hormone controlling circadian rhythm. Humans produce melatonin at night which is the reason for sleeping in the night and awakening over the day. Melatonin interacts with melatonin receptors MT1 and MT2 but it was also revealed that melatonin is a strong antioxidant and it also has a role in regulation of cell cycle. Currently, melatonin is used as a drug for some types of sleep disorder but the recent research points to the fact that melatonin can also serve for the other purposes including prophylaxis or therapy of lifestyle diseases, cancer, neurodegenerative disorders and exposure to chemicals. This review summarizes basic facts and direction of the current research on melatonin. The actual literature was scrutinized for the purpose of this review.