Figure S10. 13 C APT NMR spectrum of 3 in CD 2 Cl 2 (75 MHz, 298K).

Figure S10. 13 C APT NMR spectrum of 3 in CD 2 Cl 2 (75 MHz, 298K).

Source publication
Article
Full-text available
The iridium(III) complexes [Ir(H)(Cl)(κ2-NSitBu2)(κ2-bipyMe2)] (2) and [Ir(H)(OTf)(κ2-NSitBu2)(κ2-bipyMe2)] (3) (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl) have been synthesized and characterized including X-ray studies of 3. A comparative study of the catalytic activity of complexes 2, 3, [Ir(H)(OTf)(κ2-NSitBu2)(coe)] (4), and [Ir(H)(OT...

Similar publications

Article
Full-text available
Correction for 'Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance' by Alejandra Gomez-España et al., Dalton Trans., 2023, 52, 6722-6729, https://doi.org/10.1039/d3dt00744h.

Citations

Article
Full-text available
The chemistry of transition‐metal (TM) complexes with monoanionic bidentate (κ²‐L,Si) silyl ligands has considerably grown in recent years. This work summarizes the advances in the chemistry of TM‐(κ²‐L,Si) complexes (L=N‐heterocycle, phosphine, N‐heterocyclic carbene, thioether, ester, silylether or tetrylene). The most common synthetic method has been the oxidative addition of the Si−H bond to the metal center assisted by the coordination of L. The metal silicon bond distances in TM‐(κ²‐L,Si) complexes are in the range of metal‐silyl bond distances. TM‐(κ²‐L,Si) complexes have proven to be effective catalysts for hydrosilylation and/or hydrogenation of unsaturated molecules among other processes.