Figura 6 - uploaded by Evelio González Dalmau
Content may be subject to copyright.
Efecto de la segmentación de ruido sobre la imagen FLAIR. A) Imagen original y su histograma correspondiente. B) Imagen de ruido segmentado empleando el método del " 5 por ciento " , e histograma donde se muestra el umbral de ruido a partir del cual se segmentó, C) Imagen de ruido empleando el " método de la derivada " , e histograma donde se muestra el umbral de ruido seleccionado para segmentar. D) Imagen de ruido obtenida por el " método del por ciento más la derivada " , e histograma que muestra el umbral seleccionado para la segmentación.  

Efecto de la segmentación de ruido sobre la imagen FLAIR. A) Imagen original y su histograma correspondiente. B) Imagen de ruido segmentado empleando el método del " 5 por ciento " , e histograma donde se muestra el umbral de ruido a partir del cual se segmentó, C) Imagen de ruido empleando el " método de la derivada " , e histograma donde se muestra el umbral de ruido seleccionado para segmentar. D) Imagen de ruido obtenida por el " método del por ciento más la derivada " , e histograma que muestra el umbral seleccionado para la segmentación.  

Source publication
Article
Full-text available
En el estudio y diagnóstico de pacientes pediátricos que presentan tumores en el sistema nervioso central (SNC), se emplean imágenes de Resonancia Magnética (RM) para cuantificar, evaluar y documentar las terapias y tratamientos aplicados. Estas imágenes se ven afectadas por ruidos, principalmente producto del movimiento del paciente en el período...

Similar publications

Article
Full-text available
Os atendimentos e internações relativos a infecções das vias aéreas são grandes causas de morbidade e mortalidade na infância. As infecções respiratórias agudas (IRA’s) são responsáveis por 30 a 60% dos atendimentos ambulatoriais pediátricos e por 10% das internações de crianças, podendo chegar a 42% dos atendimentos pediátricos. O objetivo do trab...

Citations

... Para [17] existe un efecto de la segmentación de ruido sobre la imagen FLAIR en Imagen original y su histograma correspondiente, en imagen de ruido segmentado empleando el método del " 5 por ciento" , e histograma donde se muestra el umbral de ruido a partir del cual se segmenta. La imagen de ruido empleando el "método de la derivada ". ...
Article
Full-text available
El artículo permite abordar la importancia del procesamiento digital de imágenes en la detección temprana del cáncer de pulmón, una de las principales causas de mortalidad a nivel mundial, donde técnicas de minería de datos y análisis de imágenes pueden mejorar la identificación de anomalías en radiografías de tórax, facilitando un diagnóstico más preciso y oportuno. Mediante herramientas como GIMP y Python, se realizó un análisis de las imágenes médicas, mismas que permitieron mejorar la calidad de las imágenes aunado a la generación de datos importantes que pueden ser utilizados para entrenar modelos de aprendizaje automático, la información brindada por las radiografías de tórax contribuirán en un futuro en el desarrollo de una red neuronal capaz de predecir la presencia de cáncer de pulmón en etapas tempranas, lo que podría reducir significativamente los costos de pruebas diagnósticas invasivas y permitir que los pacientes reciban tratamientos más oportunos. Los resultados mostraron diferencias significativas en las densidades de masa de las radiografías, lo que sugiere su potencial para identificar signos tempranos de cáncer, lo anterior sienta las bases para el desarrollo futuro de una red neuronal capaz de predecir la presencia de cáncer de pulmón en sus etapas iniciales, lo que podría reducir los costos de pruebas invasivas y permitir tratamientos más rápidos. La combinación de avances en procesamiento de imágenes y minería de datos es esencial para establecer estándares en la detección temprana del cáncer de pulmón, mejorando así los pronósticos y la calidad de vida de los pacientes.
... Esto debido a la presencia de ruido y bajo contraste en zonas de importancia. Se ha realizado estudios comparativos de algoritmos que permiten eliminar el ruido [25]. Sin embargo, en esta ocasión las imágenes de trabajo son de bajo ruido por lo que la segmentación se realizó manipulando el histograma y a través de umbralización. ...
Article
Full-text available
The main goal of radiation therapy is to provide a high dose of ionizing radiation to the volume defined as injury or target, and reduce the dose to organs or tissues that are close to its anatomy, without subdosificar the treatment area. Due to this, the three-dimensional visualization of the treatment area is of great importance in subsequent simulation and treatment planning. This is a of the importance of using medical diagnostic images in this process.The information visual of medical diagnostic images done in studies carcinogenic ill patients are obtained with diagnostic equipment (for this project will focus on Computed Tomography CT and NMR Nuclear Magnetic Resonance), allow the acquisition of data that has great importance for treatment. By processing this group of images, the volume reconstruction is obtained (3D visualization) from tumor areas of each tissue or areas of interest, through of processing digital of images. The zones reconstruction 3D of interest permitted determining simulation parameters for teletherapy treatments as: the delimitation of area to be treated, reducing surrounding areas or organs. Additionally, it obtained the information for focusing of the treatment beam, for determining field sizes, angles of the couch, gantry and collimator. With these data and calibration data processing equipment (Accelerator), the treatment time or calculation point is determined, which allow in the Radiotherapy improve treatment and its results.
... Esto debido a la presencia de ruido y bajo contraste en zonas de importancia. Se ha realizado estudios comparativos de algoritmos que permiten eliminar el ruido [25]. Sin embargo, en esta ocasión las imágenes de trabajo son de bajo ruido por lo que la segmentación se realizó manipulando el histograma y a través de umbralización. ...
Article
Full-text available
El objetivo principal de la Radioterapia es suministrar una alta dosis de radiacion ionizante al volumen definido como lesion o blanco, y reducir la dosis en los organos o tejidos que por anatomia estan cerca de ella, sin subdosificar la zona de tratamiento. Debido a esto, la visualizacion tridimensional de la zona a tratar, es de gran importancia en la simulacion y la posterior planeacion del tratamiento. Esta es una de las importancias que tienen las imagenes de diagnostico medico (IDM) en este proceso. La informacion visual de las Imagenes de Diagnostico Medico (IDM) de estudios a pacientes con enfermedades Carcinogenicas, y que son obtenidas con equipos de diagnostico (para este proyecto son de Tomografia Axial Computarizada TAC y de Resonancia Magnetica Nuclear RMN), permiten extraer datos de gran importancia para el tratamiento. En este trabajo se obtiene la reconstruccion volumetrica (visualizacion 3D) de zonas tumorales de interes en las IDM, a traves del procesamiento de las imagenes. La reconstruccion 3D de las zonas de interes permite determinar parametros de simulacion de entorno para tratamientos de teleterapia como la delimitacion de zona a tratar, la reduccion de zonas aledanas u organos adyacentes. Lo anterior, posibilita obtener informacion para la focalizacion del haz de tratamiento, la determinacion de tamanos de campos y las angulaciones de camilla, gantry y colimador. Con estos datos y los datos de calibracion del acelerador (equipo de tratamiento), se determina el tiempo de tratamiento o calculo a punto, lo cual permite en la Radioterapia mejorar el tratamiento y sus resultados.
... The noise segmentation method used here is to find the highest five percent of the histogram. [8]. The selection of the threshold as the "five percent" of the maximum of the histogram is empirical and holds whenever the signal to noise ratio is above 15 relative units [7,8]. ...
... [8]. The selection of the threshold as the "five percent" of the maximum of the histogram is empirical and holds whenever the signal to noise ratio is above 15 relative units [7,8]. Figure 1 shows a block diagram which depicts the sequence of the algorithm described [8]. ...
... The selection of the threshold as the "five percent" of the maximum of the histogram is empirical and holds whenever the signal to noise ratio is above 15 relative units [7,8]. Figure 1 shows a block diagram which depicts the sequence of the algorithm described [8]. ...
Conference Paper
Full-text available
Currently in the biomedical field of image processing software are used for quantitative measurement of tumor lesions, but the analysis of longitudinal studies has limitations; mainly for monitoring of treatment effect and some of this software are owners. Existing software from brain tumor diagnosis and evaluation treatment is a manual process of mensuration of the size of the tumor and alone slide measurement selected, without one a tool that integrates all the functionalities for the quantitative evaluation of the lesions and applied treatments. This justifies finding new and validated tools for imaging biomarkers (IB) applied to magnetic resonance image (MRI). A series of 29 pediatric patients, 14 females and 15 males, between 3 to 18 years, with confirmed malignant brain tumors and treated with a monoclonal antibody nimotuzumab, were evaluated during 2 years for to validate IB-MRI. The MRI were obtained with a 1.5 T MR Symphony Maestro Class System (Siemens, Germany). The protocol included weighted images in T2, T1 and FLAIR. A tool developed in Matlab was obtained. Segmentation and reconstruction methods in three dimensions (3D) were applied and were also integrated in a single interface to integrate others separate tools. Additionally includes the use of an automated method of segmentation of background noise that reduces the amount of points to be processed. The volumes calculated overlap each technique reflecting different biological realities. Our tool is effective to quantitatively evaluate the antitumor effect to treatment.
Article
Knowledge of the longitudinal and transverse relaxivities (r1 and r2) of a contrast agent (CA) is essential for its magnetic characterization. These parameters can be measured using Magnetic Resonance Imaging (MRI) clinical scanners with the advantage of characterizing the CA under the same experimental conditions where it will be employed. Nevertheless, when using MRI, there are several limitations to consider, and we provide ways to compensate for them to obtain accurate results. We present a fast and robust methodology to determine the relaxivity of CA solutions using a 3 T MRI clinical scanner with a single-channel transmit-receive birdcage coil. We performed relaxivity measurements on a phantom consisting of five samples of copper sulfate at different concentrations. We optimized image acquisition for total scan time using three different pulse sequences. Post-processing steps following image acquisition were implemented in a semiautomatic MATLAB toolbox. Relaxation times were estimated using the three-parameter model with the Levenberg-Marquardt algorithm. Statistical comparisons demonstrate good reproducibility and robustness in the relaxivity estimation by each method. This paper presented a methodology and a systematic discussion of experimental factors associated with relaxivity determination.
Preprint
Full-text available
Knowledge of the longitudinal and transverse relaxivities (r 1 and r 2 ) of a contrast agent (CA) is essential for its magnetic characterization. These parameters can be measured using Magnetic Resonance Imaging (MRI) clinical scanners with the advantage of characterizing the CA under the same experimental conditions where it will be employed. Nevertheless, when using MRI, there are several limitations to be considered, and we provide ways to compensate for them to obtain more accurate results. Here, we present a fast and robust methodology to determine the relaxivity of CA solutions using a 3T MRI clinical scanner with a birdcage coil. Relaxivity measurements were performed on a phantom consisting of 5 samples of copper sulfate at different concentrations. We optimized image acquisition for total scan time using three different pulse sequences. Post-processing steps following image acquisition were implemented in a semiautomatic MATLAB toolbox. Relaxation times were estimated using the three-parameter model with the Levenberg-Marquardt algorithm. Statistical comparisons demonstrate good reproducibility and robustness in the relaxivity estimation by each method.
Conference Paper
Full-text available
The SIGES is a research project of EAN University, which allows the visualization of data in an interactive reporting platform, which allows analyzing the information and monitoring the evolution of quantitative and qualitative indicators, related to sustainability in organization. These indicators are classified by groups in economic, social, environmental and institutional issues. Then they are organized on screens, so that the process of identification, association and interpretation is easy. The SIGES platform is designed to be an outstanding means of communication, which allows to eliminate to the maximum the bureaucracy of the information, respecting the levels of confidentiality of the data, with the purpose of serving as integral management tool that goes beyond the financial perspective, we to bring new competitive advantages to the institution, benefit and positive impact on the image and well-being of interest groups around the university. The main strengths of the SIGES are the availability of information, summarized, grouped and easy to interpret, with a high level of reliability, offering effective mechanisms for decision making. The project is in phase III of its development, according to the methodology.
Article
Full-text available
This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy.