Figure - uploaded by Jan Kocoń
Content may be subject to copyright.
F1-scores for Single Domain evaluation. (Train, Dev, Test) sets for settings are the same as in Table 2, rows 1-3.
Source publication
In this article we present extended results obtained on the multidomain dataset of Polish text reviews collected within the Sentimenti project. We present preliminary results of classification models trained and tested on 7,000 texts annotated by over 20,000 individuals using valence, arousal, and eight basic emotions from Plutchik’s model. Additio...
Similar publications
With the surge in digital content in low-resource languages, there is an escalating demand for advanced Natural Language Processing (NLP) techniques tailored to these languages. BERT (Bidirectional Encoder Representations from Transformers), serving as the foundational framework for numerous NLP architectures and language models, is increasingly em...
Automatic genre identification (AGI) is a text classification task focused on genres, i.e., text categories defined by the author’s purpose, common function of the text, and the text’s conventional form. Obtaining genre information has been shown to be beneficial for a wide range of disciplines, including linguistics, corpus linguistics, computatio...
Technology has dominated a huge part of human life. Furthermore, technology users use language continuously to express feelings and sentiments about things. The science behind identifying human attitudes toward a particular product, service,or topic is one of the most active fields of research, and it is called sentiment analysis. While the English...
While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue...
Social media processing is a fundamental task in natural language processing with numerous applications. As Vietnamese social media and information science have grown rapidly, the necessity of information-based mining on Vietnamese social media has become crucial. However, state-of-the-art research faces several significant drawbacks, including imb...
Citations
In the era of artificial intelligence, data is gold but costly to annotate. The paper demonstrates a groundbreaking solution to this dilemma using ChatGPT for text augmentation in sentiment analysis. We leverage ChatGPT's generative capabilities to create synthetic training data that significantly improves the performance of smaller models, making them competitive with, or even outperforming, their larger counterparts. This innovation enables models to be both efficient and effective, thereby reducing computational cost, inference time, and memory usage without compromising on quality. Our work marks a key advancement in the cost-effective development and deployment of robust sentiment analysis models.
Designing predictive models for subjective problems in natural language processing (NLP) remains challenging. This is mainly due to its non-deterministic nature and different perceptions of the content by different humans. It may be solved by Personalized Natural Language Processing (PNLP), where the model exploits additional information about the reader to make more accurate predictions. However, current approaches require complete information about the recipients to be straight embedded. Besides, the recent methods focus on deterministic inference or simple frequency-based estimations of the probabilities. In this work, we overcome this limitation by proposing a novel approach to capture the uncertainty of the forecast using conditional Normalizing Flows. This allows us to model complex multimodal distributions and to compare various models using negative log-likelihood (NLL). In addition, the new solution allows for various interpretations of possible reader perception thanks to the available sampling function. We validated our method on three challenging, subjective NLP tasks, including emotion recognition and hate speech. The comparative analysis of generalized and personalized approaches revealed that our personalized solutions significantly outperform the baseline and provide more precise uncertainty estimates. The impact on the text interpretability and uncertainty studies are presented as well. The information brought by the developed methods makes it possible to build hybrid models whose effectiveness surpasses classic solutions. In addition, an analysis and visualization of the probabilities of the given decisions for texts with high entropy of annotations and annotators with mixed views were carried out.
Sentiment analysis involves using WordNets enriched with emotional metadata, which are valuable resources. However, manual annotation is time-consuming and expensive, resulting in only a few WordNet Lexical Units being annotated. This paper introduces two new techniques for automatically propagating sentiment annotations from a partially annotated WordNet to its entirety and to a WordNet in a different language: Multilingual Structured Synset Embeddings (MSSE) and Cross-Lingual Deep Neural Sentiment Propagation (CLDNS). We evaluated the proposed MSSE+CLDNS method extensively using Princeton WordNet and Polish WordNet, which have many inter-lingual relations. Our results show that the MSSE+CLDNS method outperforms existing propagation methods, indicating its effectiveness in enriching WordNets with emotional metadata across multiple languages. This work provides a solid foundation for large-scale, multilingual sentiment analysis and is valuable for academic research and practical applications.