Examples of taxonomic gut microbiota composition. In the box are cited examples of bacteria belonging to Phyla Firmicutes and Bacteroidetes, representing 90% of gut microbiota.

Examples of taxonomic gut microbiota composition. In the box are cited examples of bacteria belonging to Phyla Firmicutes and Bacteroidetes, representing 90% of gut microbiota.

Source publication
Article
Full-text available
Each individual is provided with a unique gut microbiota profile that plays many specific functions in host nutrient metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Gut microbiota are composed of different bacteria species taxonomically classified by genus, family, orde...

Contexts in source publication

Context 1
... Actinobacteria phylum is proportionally less abundant and mainly represented by the Bifidobacterium genus [13]. Examples of taxonomic gut microbiota composition are illustrated in Figure 1. Microorganisms 2018, 6, x FOR PEER REVIEW 3 of 23 Figure 1. ...
Context 2
... of taxonomic gut microbiota composition are illustrated in Figure 1. Microorganisms 2018, 6, x FOR PEER REVIEW 3 of 23 Figure 1. Examples of taxonomic gut microbiota composition. ...

Similar publications

Article
Full-text available
Systems biology provides an opportunity to discover the role that gut microbiota play in almost all aspects of human health. Existing evidence supports the hypothesis that gut microbiota is closely related to the pharmacological effects of chemical therapy and novel targeted immunotherapy. Gut microbiota shapes the efficiency of drugs through sever...
Article
Full-text available
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases caused by abnormal immune activation and immune tolerance. Immunomodulatory cells (ICs) play a critical role in the maintenance and homeostasis of normal immune function and in the pathogenesis of RA. The human gastrointestinal tract is inhabited by trillions of commensal micro...
Article
Full-text available
The community of the diverse microorganisms residing in the gastrointestinal tract, known as the gut microbiota, is exceedingly being studied for its impact on health and disease. This community plays a major role in nutrient metabolism, maintenance of the intestinal epithelial barrier but also in local and systemic immunomodulation. A dysbiosis of...

Citations

... Multiple factors including age, genetics, environmental stress, infection, diet, and antibiotics (ABX) can contribute to dysbiosis [11,14]. Antibiotics are widely used in medicine and surgery [15][16][17]. ...
Article
Full-text available
Objective Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are linked with diverse disease states including neurological and neurodegenerative conditions. To combat the consequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery. Results In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing confirmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX administration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.
... In particular, the human gastrointestinal (GI) tract has a microbial diversity of up to 100 trillion microorganisms, predominantly bacteria but also archaea, viruses, and parasites. The GM encodes more than three million genes that produce hundreds of metabolites [4]. This vast ecosystem is susceptible to adaptive changes based on multiple factors, external and internal, such as genetics, age, diet, drugs, stress, physical activity (PA), including exercise [5,6]. ...
Article
Full-text available
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut-brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently , it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
... The human gut microbiota is a diverse and complex bacterial consortium, including beneficial commensal bacteria, mainly comprising the phyla Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, which maintain a symbiotic relationship with their host (Rinninella et al., 2019). The normal commensal microbiota has a protective function against the pathogenic effects of bacteria such as C. difficile, S. typhirmurium, and E. coli through mechanisms of competition for nutrients, production of bacteriocins, inhibitory metabolic byproducts, and modulation of the host's immune response (Abt and Pamer, 2014). ...
Article
Full-text available
The human colonic mucus is mainly composed of mucins, which are highly glycosylated proteins. The normal commensal colonic microbiota has mucolytic activity and is capable of releasing the monosaccharides contained in mucins, which can then be used as carbon sources by pathogens such as Enterohemorrhagic Escherichia coli (EHEC). EHEC can regulate the expression of some of its virulence factors through environmental sensing of mucus-derived sugars, but its implications regarding its main virulence factor, Shiga toxin type 2 (Stx2), among others, remain unknown. In the present work, we have studied the effects of five of the most abundant mucolytic activity-derived sugars, Fucose (L-Fucose), Galactose (D-Galactose), N-Gal (N-acetyl-galactosamine), NANA (N-Acetyl-Neuraminic Acid) and NAG (N-Acetyl-D-Glucosamine) on EHEC growth, adhesion to epithelial colonic cells (HCT-8), and Stx2 production and translocation across a polarized HCT-8 monolayer. We found that bacterial growth was maximum when using NAG and NANA compared to Galactose, Fucose or N-Gal, and that EHEC adhesion was inhibited regardless of the metabolite used. On the other hand, Stx2 production was enhanced when using NAG and inhibited with the rest of the metabolites, whilst Stx2 translocation was only enhanced when using NANA, and this increase occurred only through the transcellular route. Overall, this study provides insights on the influence of the commensal microbiota on the pathogenicity of E. coli O157:H7, helping to identify favorable intestinal environments for the development of severe disease.
... Table 1 further notes the common bacterial populations found in the gut microbiome. It is important to note that, even in healthy individuals, taxonomical variations exist due to differences in diet, geography, and lifetime medication and antibiotic use [15]. Despite these differences, the composition of the adult gut microbiome can be classified into three clusters, or enterotypes, based on species composition [14]. ...
Article
Full-text available
Rheumatoid arthritis is a chronic systemic immune-mediated disease caused by genetic and environmental factors. It is often characterized by the generation of autoantibodies that lead to synovial inflammation and eventual multi-joint destruction. A growing number of studies have shown significant differences in the gut microbiota composition of rheumatoid arthritis (RA) patients compared to healthy controls. Environmental factors, and changes in diet and nutrition are thought to play a role in developing this dysbiosis. This review aims to summarize the current knowledge of intestinal dysbiosis, the role of nutritional factors, and its implications in the pathogenesis of rheumatoid arthritis and autoimmunity. The future direction focuses on developing microbiome manipulation therapeutics for RA disease management.
... A AVAILABILITY STATEMENT Metabolome raw sequence data were uploaded to the MetaboLights database and are available through accession number MTBLS3683. Microbiome raw sequence data were uploaded to against pathogens [2,3]. The homeostasis of the gastrointestinal microbiota is relevant to host health [4,5]. ...
Article
Full-text available
Antibiotics were once used in animal production to improve productivity and resistance to pathogenic microbiota. However, due to its negative effects, the search for a new class of substances that can replace its efficacy has become one of the urgent problems to be solved. Plant essential oils (EOs) as a natural feed additive can maintain microbiota homeostasis and improve animal performance. However, its specific mechanism of action needs to be further investigated. Therefore, we added different doses of essential oil of Zanthoxylum bungeanum (EOZB) to the diets of Small Tail Han Sheep hybrid male lambs (STH lambs) to evaluate the effect of EOZB on rumen enzyme activity, rumen microbiology, and its metabolites in STH lambs. Twenty STH lambs were randomly divided into four groups (n = 5/group) and provided with the same diet. The dietary treatments were as follows: basal diet (BD) group; BD+EOZB 5 ml/kg group; BD+EOZB 10 ml/kg group; BD+EOZB 15 ml/kg group. We found that EOZB 10 ml/kg helped to increase rumen pectinase ( P <0.05) and lipase ( P <0.05) activities. Microbial 16S rRNA gene analysis showed that EOZB significantly altered the abundance of rumen microbiota ( P <0.05). LC/GC-MS metabolomic analysis showed that the addition of EOZB produced a total of 1073 differential metabolites, with 58 differential metabolites remaining after raising the screening criteria. These differential metabolites were mainly enriched in glycerophospholipid metabolism, choline metabolism in cancer, retrograde endocannabinoid signaling, benzoxazinoid biosynthesis, and protein digestion and absorption. Correlation analysis showed that some rumen microbiota were significantly correlated with differential metabolite and enzyme activities.
... The high richness and diverse microbiota have been associated with health benefits such as protection against enteropathogens, and contribute to normal immune function (54)(55)(56). To date, there is no uniform definition of a healthy gut microbiota composition, mainly due to large inter-individual variability resulting from differences in, for example, dietary and cultural habits, lifestyle, environment, and antibiotic use (57,58). On the other hand, many studies have reported skewed microbial composition in several types of diseases. ...
Article
Full-text available
Recent studies suggest that a diet rich in sugars significantly affects the gut microbiota. Adverse metabolic effects of sugars may partly be mediated by alterations of gut microbiota and gut health parameters, but experimental evidence is lacking. Therefore, we investigated the effects of high intake of fructose or galactose, with/without fructooligosaccharides (FOS), on gut microbiota composition in rats and explored the association between gut microbiota and low-grade systemic inflammation. Sprague–Dawley rats (n = 6/group) were fed the following isocaloric diets for 12 weeks (% of the dry weight of the sugars or FOS): (1) starch (control), (2) fructose (50%), (3) galactose (50%), (4) starch+FOS (15%) (FOS control), (5) fructose (50%)+FOS (15%), (6) galactose (50%)+FOS (15%), and (7) starch+olive (negative control). Microbiota composition in the large intestinal content was determined by sequencing amplicons from the 16S rRNA gene; 341F and 805R primers were used to generate amplicons from the V3 and V4 regions. Actinobacteria, Verrucomicrobia, Tenericutes, and Cyanobacteria composition differed between diets. Bifidobacterium was significantly higher in all diet groups where FOS was included. Modest associations between gut microbiota and metabolic factors as well as with gut permeability markers were observed, but no associations between gut microbiota and inflammation markers were observed. We found no coherent effect of galactose or fructose on gut microbiota composition. Added FOS increased Bifidobacterium but did not mitigate potential adverse metabolic effects induced by the sugars. However, gut microbiota composition was associated with several metabolic factors and gut permeability markers which warrant further investigations.
... Further investigation of the gut microbiome by observational and interventional studies is needed. Elucidating how to maintain or restore a "healthy" gut is relevant not only for COVID-19 but also for numerous diseases, such as chronic, inflammatory, metabolic, and neurological disorders [509]. ...
Article
Full-text available
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
... Interestingly, a few studies in rodent models explored the combined effect of prenatal exposure to LPS with pre-and postnatal HFD on the immune and behavioral profile of the offspring [59][60][61]. Repeated LPS-stimulation of HFD dams during pregnancy affected the inflammatory profile in the offspring's brain in a different way compared to a post-natal LPS exposure of maternal HFD offspring. The combined prenatal exposure (maternal HFD+LPS) lowered the IL-6/IL-10 ratio in the amygdala, hippocampus and prefrontal cortex, and reduced anxiety-like behaviors and short-term memory impairment at adolescence suggesting an unexpected protective effect of LPS against maternal HFD. ...
... Physiological changes in the microbiota are observed throughout life, with life extremes (i.e., birth and senescence) being characterized by overt differences from the typical adult gut microbiota in terms of diversity, as well as in the representation of specific taxa [30]. Significant alterations in the microbiota composition are found in response to diet, BMI and stressful life events (among many conditions), greatly compromising its proper functioning leading to increased vulnerability to the onset of a variety of pathological conditions [59]. Alterations in the gut microbiota and inflammation may involve a bidirectional connection. ...
Article
Full-text available
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
... Several factors may explain this. It was partially because of the evidence that gut microbiota composition could be associated with the clinical course of several intestinal and extraintestinal diseases and that reversing dysbiosis, i.e., the imbalance of gut microflora with a reduction in microbial diversity and emergence of potentially pathogenic bacteria, could be of benefit not only for some intestinal problems but also for treatment of obesity, allergic disorders, type 1 diabetes mellitus, autism, and some respiratory conditions [17]. Even more important is the finding that CF patients themselves had dysbiosis and that this could explain at least in part not only the intestinal disorders but also the respiratory ones. ...
Article
Full-text available
In the last 20 years, gut microbiota in patients with cystic fibrosis (CF) has become an object of interest. It was shown that these patients had gut dysbiosis and this could explain not only the intestinal manifestations of the disease but also part of those involving the respiratory tract. The acquisition of previously unknown information about the importance of some bacteria, i.e., those partially or totally disappeared in the gut of CF patients, in the regulation of the activity and function of the gut and the lung was the base to suggest the use of probiotics in CF patients. The main aim of this paper is to discuss the biological basis for probiotic administration to CF patients and which results could be expected. Literature analysis showed that CF intestinal dysbiosis depends on the same genetic mutations that condition the clinical picture of the diseases and is aggravated by a series of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the administration of antacids. All this translates into a significant worsening of the structure and function of organs, including the lung and intestine, already deeply penalized by the genetic alterations of CF. Probiotics can intervene on dysbiosis, reducing the negative effects derived from it. However, the available data cannot be considered sufficient to indicate that these bacteria are essential elements of CF therapy. Further studies that take into account the still unsolved aspects on how to use probiotics are absolutely necessary.
... Early-life gut microbiota is strongly influenced by dietary factors including the introduction of formula and solid food 21,23,27 . The most dominant and differentially abundant taxa in the infant gut due to obesity was Firmicutes followed by Bacteroidetes 33 , as has also been found in adult studies 34 . It has been hypothesized that having higher gut levels of Firmicutes promotes more efficient storage of energy from a given diet among obese subjects compared with lean subjects. ...
Article
Full-text available
Several studies have shown that body mass index is strongly associated with differences in gut microbiota, but the relationship between body weight and oral microbiota is less clear especially in young children. We aimed to evaluate if there is an association between child growth and the saliva microbiome. We hypothesized that associations between growth and the saliva microbiome would be moderate, similarly to the association between growth and the gut microbiome. For 236 toddlers participating in the New Hampshire Birth Cohort Study, we characterized the association between multiple longitudinal anthropometric measures of body height, body weight and body mass. Body Mass Index (BMI) z-scores were calculated, and dual-energy x-ray absorptiometry (DXA) was used to estimate body composition. Shotgun metagenomic sequencing of saliva samples was performed to taxonomically and functionally profile the oral microbiome. We found that within-sample diversity was inversely related to body mass measurements while community composition was not associated. Although the magnitude of associations were small, some taxa were consistently associated with growth and modified by sex. Certain taxa were associated with decreased weight or growth (including Actinomyces odontolyticus and Prevotella melaninogenica) or increased growth (such as Streptococcus mitis and Corynebacterium matruchotii) across anthropometric measures. Further exploration of the functional significance of this relationship will enhance our understanding of the intersection between weight gain, microbiota, and energy metabolism and the potential role of these relationships on the onset of obesity-associated diseases in later life.