Figure - available from: Scientific Reports
This content is subject to copyright. Terms and conditions apply.
Examples of incidence threshold-based interventions for infectivity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 0.065$$\end{document}. (Left column) Incidence per 100,000 inhabitants and mobility curves throughout a realisation of strict traffic light interventions without vaccination. Mobility is adjusted every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_r=30$$\end{document} timesteps and adopts the values stated in Table 2 immediately. (Right column) Epidemic and mobility curves throughout a realisation of lenient traffic light interventions without vaccination. Mobility aims to adopt the values stated in Table 2 progressively, in changes of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta p = 0.1$$\end{document} revised every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_r=60$$\end{document} timesteps. The grey dashed line in (A) and (B) represents an incidence rate of 10 daily cases per 100,000 individuals. (E) and (G) show the effective mobility level, calculated as an average of the mobility from the 180 timesteps prior to each date. (F) and (H) System trajectories in the immunity-mobility space of Fig. 2 for each intervention. All mobility curves are accompanied by the critical mobility levels at different contours shown in Fig. 2.

Examples of incidence threshold-based interventions for infectivity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 0.065$$\end{document}. (Left column) Incidence per 100,000 inhabitants and mobility curves throughout a realisation of strict traffic light interventions without vaccination. Mobility is adjusted every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_r=30$$\end{document} timesteps and adopts the values stated in Table 2 immediately. (Right column) Epidemic and mobility curves throughout a realisation of lenient traffic light interventions without vaccination. Mobility aims to adopt the values stated in Table 2 progressively, in changes of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta p = 0.1$$\end{document} revised every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_r=60$$\end{document} timesteps. The grey dashed line in (A) and (B) represents an incidence rate of 10 daily cases per 100,000 individuals. (E) and (G) show the effective mobility level, calculated as an average of the mobility from the 180 timesteps prior to each date. (F) and (H) System trajectories in the immunity-mobility space of Fig. 2 for each intervention. All mobility curves are accompanied by the critical mobility levels at different contours shown in Fig. 2.

Source publication
Article
Full-text available
When considering airborne epidemic spreading in social systems, a natural connection arises between mobility and epidemic contacts. As individuals travel, possibilities to encounter new people either at the final destination or during the transportation process appear. Such contacts can lead to new contagion events. In fact, mobility has been a cru...