Fig 2 - uploaded by Philip Fearnside
Content may be subject to copyright.
Dynamic systems model of the Sete de Setembro Indigenous Land socio-ecological system. Sign next to each arrow (+ or -) indicates whether the relation is positive or negative as classed from interviews and/or available data analysis  

Dynamic systems model of the Sete de Setembro Indigenous Land socio-ecological system. Sign next to each arrow (+ or -) indicates whether the relation is positive or negative as classed from interviews and/or available data analysis  

Source publication
Article
Full-text available
Interactions of indigenous peoples with the surrounding non-indigenous society are often the main sources of social and environmental changes in indigenous lands. In the case of the Suruí in Brazilian Amazonia’s “arc of deforestation,” these influences are leading to deforestation and logging that threaten both the forest and the sustainability of...

Similar publications

Article
Full-text available
In Brazil, indigenous peoples have formal control of 21% of the Amazon, and their lands are the best preserved in the region. They are the most vulnerable social group in the region. Most of this population depends on natural resources for subsistence and are becoming increasingly threatened by extreme climate events. Even though their lands provid...

Citations

... The Suruí project, implemented in an indigenous territory, is the only case where the synthetic control deforestation exceeded the baseline deforestation adopted by the project proponents. This may reflect the fact that the baseline for Suruí was developed based on a participatory, system dynamics model (25), as opposed to the assumptions based on historical deforestation trends adopted by all other projects (see SI Appendix for details). ...
... Baseline updates could be based on control areas that share similar characteristics as the REDD+ projects, as demonstrated in this study with the construction of the synthetic controls. In addition, coupled human-natural system models, such as was used in the Suruí case, can be used to explore alternative baseline scenarios and quantify the potential downside risks involved in conservation investments under dynamic patterns of land-use change, although at increased project development costs (25). These models could also shed light on the potential impacts of REDD+ on local livelihoods and biodiversity (45,46), which we do not consider here but recognize as fundamentally important. ...
... Following VCS-approved carbonaccounting methodologies, historical deforestation rates were the basis of all project deforestation baselines with the exception of the Suruí project (e.g., Fig. 1). In the latter, baseline deforestation rates were informed by a participatory, and community-specific, system dynamics model (25). ...
Article
Full-text available
Reducing emissions from deforestation and forest degradation (REDD+) has gained international attention over the past decade, as manifested in both United Nations policy discussions and hundreds of voluntary projects launched to earn carbon-offset credits. There are ongoing discussions about whether and how projects should be integrated into national climate change mitigation efforts under the Paris Agreement. One consideration is whether these projects have generated additional impacts over and above national policies and other measures. To help inform these discussions, we compare the crediting baselines established ex-ante by voluntary REDD+ projects in the Brazilian Amazon to counterfactuals constructed ex-post based on the quasi-experimental synthetic control method. We find that the crediting baselines assume consistently higher deforestation than counterfactual forest loss in synthetic control sites. This gap is partially due to decreased deforestation in the Brazilian Amazon during the early implementation phase of the REDD+ projects considered here. This suggests that forest carbon finance must strike a balance between controlling conservation investment risk and ensuring the environmental integrity of carbon emission offsets. Relatedly, our results point to the need to better align project- and national-level carbon accounting.
... The Sete de Setembro Indigenous Land (Figure 1), 250 km 2 of protected land at the border between Mato Grosso and Rondônia, is inhabited by the Suruí indigenous people of Brazil. It is surrounded almost integrally by cattle pastures and croplands and is especially vulnerable to illegal deforestation and forest degradation, as is generally observed for forest-covered land surrounded by cleared areas [10]. The Suruí people were among the first in the region to seek and implement a Reducing Emissions from Deforestation and Degradation program [10,34] and a large tree plantation program in formerly degraded areas. ...
... It is surrounded almost integrally by cattle pastures and croplands and is especially vulnerable to illegal deforestation and forest degradation, as is generally observed for forest-covered land surrounded by cleared areas [10]. The Suruí people were among the first in the region to seek and implement a Reducing Emissions from Deforestation and Degradation program [10,34] and a large tree plantation program in formerly degraded areas. Nevertheless, illegal deforestation is still experienced on its territory [10]. ...
... The Suruí people were among the first in the region to seek and implement a Reducing Emissions from Deforestation and Degradation program [10,34] and a large tree plantation program in formerly degraded areas. Nevertheless, illegal deforestation is still experienced on its territory [10]. The protection effort is complicated by the geographic extent of the area and by the inherent challenge posed by the detection of small-scale deforestation (e.g., artisanal-scale gold mining in river placers deposits, selective logging for timber production, and illegal extension of cattle pasture surfaces). ...
Article
Full-text available
Forests play major roles in climate regulation, ecosystem services, carbon storage, biodiversity, terrain stabilization, and water retention, as well as in the economy of numerous countries. Nevertheless, deforestation and forest degradation are rampant in many parts of the world. In particular, the Amazonian rainforest faces the constant threats posed by logging, mining, and burning for agricultural expansion. In Brazil, the "Sete de Setembro Indigenous Land", a protected area located in a lowland tropical forest region at the border between the Mato Grosso and Rondônia states, is subject to illegal deforestation and therefore necessitates effective vegetation monitoring tools. Optical satellite imagery, while extensively used for landcover assessment and monitoring, is vulnerable to high cloud cover percentages, as these can preclude analysis and strongly limit the temporal resolution. We propose a cloud computing-based coupled detection strategy using (i) cloud and cloud shadow/vegetation detection systems with Sentinel-2 data analyzed on the Google Earth Engine with deep neural network classification models, with (ii) a classification error correction and vegetation loss and gain analysis tool that dynamically compares and updates the classification in a time series. The initial results demonstrate that such a detection system can constitute a powerful monitoring tool to assist in the prevention, early warning, and assessment of deforestation and forest degradation in cloudy tropical regions. Owing to the integrated cloud detection system, the temporal resolution is significantly improved. The limitations of the model in its present state include classification issues during the forest fire period, and a lack of distinction between natural vegetation loss and anthropogenic deforestation. Two possible solutions to the latter problem are proposed, namely, the mapping of known agricultural and bare areas and its subsequent removal from the analyzed data, or the inclusion of radar data, which would allow a large amount of finetuning of the detection processes.
... As terras indígenas protegem mais floresta amazônica do que as unidades de conservação, que são administradas pelo ICMBio no Ministério do Meio Ambiente (Nogueira et al., 2018a,b). Além de mais extensas, as terras indígenas têm sido, até agora, o tipo da área protegida mais eficaz para evitar desmatamento (Nepstad et al., 2006;Vitel et al., 2009), mas esta eficácia não pode ser presumido como automática (Fearnside, 2005b;Fearnside & Ferraz, 1995;Vitel et al., 2013). ...
Book
Full-text available
Fearnside, P.M. (ed.) 2019. Hidrelétricas na Amazônia: Impactos Ambientais e Sociais na Tomada de Decisões sobre Grandes Obras. Vol. 3. Editora do INPA, Manaus. 148 p. ISBN: 978-85-211-0195-6 http://philip.inpa.gov.br/publ_livres/2019/Hidro-v3/Livro_Hidrelétricas_Vol_3.pdf
... PES in Amazonia is of a variety of types, all of which involve controversies (Fearnside, 2012b). PES projects and plans range from voluntary market projects in indigenous lands (e.g., Vitel et al., 2013) and conservation units (e.g., Yanai et al., 2012) to state and national-level programmes (e.g., MMA, 2016;Neves et al., 2013). Like command-and-control, PES requires inspection and enforcement mechanisms to function in practice. ...
Article
Full-text available
Despite efforts to reduce deforestation in the BrazilianAmazon,there has been an up-turn in clearing rates since 2012. These increases are in part due to failures in deforestation control. Soybean planters, cattle ranchers, and timber merchants find ways to circumvent agreements and legislation. Here we explain some of the key problems with the implementation of the principal agreements and Brazilian laws that should be keeping clearing rates under control. To combat increased clearing in the Amazon, we suggest an urgent need to strengthen Brazilian environmental agencies, improve technologies used to monitor the effectiveness of clearing-reduction programmes, better integrate agrarian and environmental policies and integrate environmental enforcement across federal, state and municipal governments, as well as improve transparency along global supply chains and raise awareness among consumers to put market pressure on producers to avoid new deforestation.
... A diminuição da precipitação, incluindo episódios mais severos de seca, também resulta em aumento de incêndios florestais com consequente mortalidade de árvores [10][11][12][13][14][15][16][17][18]. Isso desencadeia um ciclo vicioso que leva a incêndios florestais subsequentes e perda de biomassa [19. ...
... As lianas aumentam significativamente mais nas áreas de borda do que no interior da floresta, refletindo o efeito do microclima mais seco perto da margem da floresta. [12] Notas A Floresta Amazônica contém um grande estoque de carbono, tanto na biomassa quanto no solo sob a floresta (Tabela 1) [1,2]. Este carbono pode ser liberado para a atmosfera não apenas por ação deliberada através do desmatamento e extração de madeira, mas também por processos de degeneração causados por mudanças climáticas e incêndios florestais. ...
... O projeto Juma, que é o primeiro projeto voluntário de REDD a evitar o desmatamento na Amazônia, ilustra como a linha de base pode exagerar as reivindicações de emissões evitadas [11]. Outro projeto voluntário de REDD, o Projeto Carbono Florestal Suruí, ilustra como as linhas de base podem ser desenvolvidas sem esse tipo de viés [12]. ...
Article
Full-text available
O aquecimento global representa múltiplas ameaças à Amazônia, incluindo picos de temperatura que afetam a saúde, a mortalidade humana e a degradação da floresta por meio da morte de árvores devido a secas, aumento da frequência de incêndios florestais e aumento de danos causados a árvores por lianas. As áreas atualmente sob floresta podem se tornar climaticamente inadequadas para a floresta tropical, levando à transformação para tipos de vegetação não florestal. A perda de floresta tem múltiplos impactos, incluindo a perda da função de reciclagem de água, que é essencial tanto para manter o regime de chuvas na Amazônia que sustentam a floresta quanto para fornecer o vapor d’água que é transportado para o sudeste do Brasil e para os países vizinhos. A perda de floresta contribui para as emissões de gases de efeito estufa e consequente aquecimento global. Os grandes estoques de carbono na floresta remanescente implicam um perigo em potencial de uma transformação em larga escala, contribuindo para um “efeito estufa descontrolado” global que escapa do controle humano. A Amazônia está no centro de várias iniciativas e controvérsias para combater o aquecimento global por meio de projetos de mitigação, incluindo Redução de Emissões por Desmatamento e Degradação [florestal] (REDD) e a falsa solução por crédito de carbono para hidrelétricas.
... O problema é que o cenário linha de base, que é um cenário "contrafatual" (hipotético), muitas vezes acaba sendo construído de forma a exceder o benefício do projeto (e.g., YANAI et al., 2012). No entanto, é possível fazer cenários linha de base que não extrapolem o benefício (e.g., VITEL et al., 2013). ...
Article
Full-text available
O conceito de serviços ambientais tem avançado bastante no Brasil e no mundo, tanto no campo acadêmico, com melhorias nos dados e nos métodos de cálculo, como no campo prático, com diversas iniciativas para pagamento de serviços ambientais no Brasil. Infelizmente, esse conceito ainda está longe de alcançar seu potencial para mudar o rumo de desenvolvimento na região como alternativa ao padrão atualmente predominante, que se baseia na destruição da floresta. Apesar disto, é cada vez mais evidente a importância da floresta amazônica em fornecer serviços ambientais, tais como a manutenção da biodiversidade, a reciclagem de água que é essencial para manter chuvas não só na Amazônia, mas também no centro-sul do país, e a mitigação do efeito estufa.
... Mesmo com a detecção de 10% da regeneração de floresta nas áreas desmatadas, a RECM mantém 94% de cobertura florestal. Isso corrobora as argu- mentações de que as áreas protegidas são barreiras ao avanço do desmatamento ( Barber et al., 2014;Nepstad et al., 2006;Numata & Cochrane, 2012;Pfaff et al., 2014;Soares-Filho et al., 2010;Yanai et al., 2012;Vitel et al., 2013). ...
Article
Full-text available
A Reserva Extrativista Chico Mendes (RECM) é uma unidade de conservação de uso sustentável que cobre quase um milhão de hectares, localizada no estado do Acre, no sudoeste da Amazônia brasileira. Ela tem 10 mil habitantes estimados. É um exemplo concreto do legado de Chico Mendes e emblemático dos desafios enfrentados pelas unidades de conservação na Amazônia. Mudanças significativas ocorreram desde que a reserva foi criada, em 1990, com relação ao desmatamento e degradação florestal. Cerca de 5,6% da RECM, 54.741ha, foi desmatado entre 1997 a 2016, segundo dados do Prodes/Inpe. Uma comparação das taxas de desmatamento registradas pelo Prodes e pelo Projeto de Mudança Florestal Global (GFC) mostrou resultados enganosamente semelhantes para o período de 2000 a 2016: 31.485ha e 34.102ha, respectivamente. Somente durante o período de 2007 a 2011, os dois monitoramentos deram resultados semelhantes. De 2012 a 2016, o GFC registrou taxas anuais cerca de 75% mais altas do que as taxas anuais do Prodes. O tamanho médio dos polígonos por ano aumentou três vezes nos últimos 10 anos, de 3 ha/ano (2001 a 2006) para 8 ha/ano (2007 a 2016), sendo 92% expansão de desmatamentos existentes. A distribuição espacial do desmatamento concentrou-se em 10 dos 46 seringais da RECM, alguns dos quais registraram mais de 50% de desmatamento até 2016 segundo o Prodes. Os incêndios florestais têm sido a grande preocupação para a Reserva Extrativista Chico Mendes, devido ao impacto de 50.363ha de florestas degradadas pelo fogo, área igual ao total de desmatamento. Essa degradação afeta o estoque de carbono e danifica as espécies utilizadas no extrativismo. Cicatrizes dos incêndios florestais contíguas > 1.000ha formaram mais da metade da área total queimada e ocorreram em áreas pouco povoadas da RECM. Secas severas parecem ser fundamentais para a propagação de incêndios florestais que tiveram origem em queimadas de limpeza e preparo do solo para pastagem e/ou agricultura de menos de 30ha, propiciando um novo paradigma de degradação florestal pelo fogo. Com o aumento do tamanho médio dos polígonos de desmatamento, a RECM enfrenta uma situação que vai contra o legado de Chico Mendes: a expansão das áreas desmatadas para pastagens e a degradação das florestas em pé, a base para a manutenção do extrativismo, pelo fogo.
... REDD is an extremely controversial topic, both in Brazil and globally (Fearnside, 2012a). Carbon accounting issues that need to be addressed in order to assure that climate benefits are real include dealing with uncertainty in the measurement of carbon stocks and their changes (Fearnside, 2000), the "baseline" (reference scenario) used for attributing emissions reductions to a mitigation project (i.e., "additionali- ty") (Yanai et al., 2012;Vitel et al., 2013), "leakage" (displacement of deforestation to locations beyond a project's boundaries) (Fearnside, 2009) and "permanence" (the time that carbon remains out of the atmosphere) ( Fearnside et al., 2000;Fearnside, 2002). These issues are substantial, but all have solutions (Fearnside, 2012b;Fearnside et al., 2014). ...
Article
Full-text available
Extractive reserves in the Amazon Forest maintain carbon stocks out of the atmosphere, thereby avoiding greenhouse-gas emissions that provoke global warming. This and other environmental services, such as recycling water and maintaining biodiversity, provide major reasons for creating these reserves and for according them priority in government programs. The importance of reducing carbon emissions from deforestation has been the principal motivation for international funding, which has been key to creating and supporting extractive reserves, notably in the cases of Germany through the PPG7 program and Norway through the Amazon Fund. Estimating the amount of carbon in these reserves and the losses that have occurred from deforestation is essential as an input to making decisions that affect current and potential future extractive reserves. By 2014, there were 47 federal extractive reserves in Brazil's Legal Amazonia region, of which 45 were in the Amazonian Tropical Forest Biome and 26 extractive reserves belonged to states, all of which were in the Amazonia Biome. This study provides data for each of the 73 extractive reserves in Legal Amazonia, based on biomass information by forest type calculated from RadamBrasil survey data, and deforestation from PRODES monitoring by LANDSAT or equivalent satellites (30-m resolution). The stocks represent carbon in the "pre-modern" biomass, that is, the biomass present in approximately 1970, or before substantial deforestation or logging activity in the region. The carbon losses reflect only deforestation, not degradation of forest by logging and/or fire. The total area of extractive reserves in Legal Amazonia amounted to 126,709 km2, of which 4301 km2 (3.4%) had been cleared by 2014. Those extractive reserves had a remaining carbon stock in forest vegetation (above and below-ground) of 2.1 billion tons. The carbon lost to deforestation totaled 74.9 million tons. Avoiding further carbon loss to both deforestation and degradation needs to be a high priority for the extractivists, as it is the FEARNSIDE, P. M. et al. Maintaining carbon stocks in extractive reserves in Brazilian Amazonia 447 value of the forest's environmental services that has the greatest potential for providing a means of support that is increasing in value and is inherently sustainable. RESUMO: As reservas extrativistas na Amazônia mantêm carbono fora da atmosfera, evitando assim as emissões de gases de efeito estufa que causam o aquecimento global. Este e outros serviços ambientais, tais como a reciclagem de água e a manutenção da biodiversidade, fornecem importantes motivos para a criação dessas reservas e a sua prioridade nos programas governamentais. A importância de reduzir as emissões de carbono por desmatamento tem sido a principal motivação de financiamentos internacionais, as quais têm sido fundamentais para criar e apoiar as reservas extrativistas, especialmente nos casos da Alemanha, através do programa PPG7, e da Noruega, através do Fundo Amazônia. Estimativas da quantidade de carbono e das perdas pelo desmatamento são essenciais na tomada de decisões que afetam as reservas extrativas atuais e as que possam ser criadas no futuro. Até 2014 havia 47 reservas extrativistas federais na Amazônia Legal, das quais 45 estavam no Bioma Amazônia, e havia 26 reservas extrativistas a nível estadual, todas no Bioma Amazônia. Fornecemos dados para cada uma das 73 reservas extrativistas na Amazônia Legal, com base em informações de biomassa por tipo de floresta calculadas a partir dos dados do Projeto RadamBrasil e desmatamento a partir do PRODES (imagens LANDSAT ou equivalente com resolução de 30 m). Os estoques representam o carbono "pré-moderno", isto é, presente em aproximadamente 1970, antes que substancial desmatamento ou atividade madeireira afetasse a região. As perdas de carbono refletem apenas o desmatamento e não a degradação da floresta por exploração madeireira e fogo. As reservas extrativistas na Amazônia Legal totalizaram 126,709 km2, dos quais 4301 km2 (3,4%) foram desmatadas até 2014. As reservas tinham um estoque de carbono restante na vegetação florestal (acima e abaixo do solo) de 2,1 bilhões de toneladas. O carbono perdido pelo desmatamento totalizou 74,9 milhões de toneladas. Evitar novas perdas, tanto pelo desmatamento quanto pela degradação, precisa ser uma alta prioridade para os extrativistas, pois os serviços ambientais da floresta têm o maior potencial para fornecer sustento ao longo prazo, sendo um recurso cujo valor vem aumentando e que é inerentemente sustentável.
... The LUCC literature focused on the Brazilian Amazon and Cerrado includes a range of different methods to simulate future scenarios, e.g., based on econometric analyses, Markov-chain matrices, dynamic systems, cellular automata, and agent-based approaches [24][25][26][27]. A relatively new approach to model LUCC relies on the Maximum Entropy Principle [28][29][30], extensively adopted for the identification of species niches in ecological studies and presence-only models [31,32]. ...
... We computed the area of soy expansion in the R software based on a linear extrapolation of historical trends and allocated the MaxEnt output accordingly. While this procedure performed relatively well in validation tests it could be refined by using more sophisticated forecasting methods [24][25][26][27]. ...
Article
Full-text available
Historically, the expansion of soy plantations has been a major driver of land-use/cover change (LUCC) in Brazil. While a series of recent public actions and supply-chain commitments reportedly curbed the replacement of forests by soy, the expansion of the agricultural commodity still poses a considerable threat to the Amazonian and Cerrado biomes. Identification of areas under high risk of soy expansion is thus paramount to assist conservation efforts in the region. We mapped the areas suitable for undergoing transition to soy plantations in the Legal Amazon with a machine-learning approach adopted from the ecological modeling literature. Simulated soy expansion for the year 2014 exhibited favorable validation scores compared to other LUCC models. We then used our model to simulate how potential future infrastructure improvements would affect the 2014 probabilities of soy occurrence in the region. In addition to the 2.3 Mha of planted soy in the Legal Amazon in 2014, our model identified another 14.7 Mha with high probability of soy conversion in the region given the infrastructure conditions at that time. Out of those, pastures and forests represented 9.8 and 0.4 Mha, respectively. Under the new infrastructure scenarios simulated, the Legal Amazonian area under high risk of soy conversion increased by up to 2.1 Mha (14.6%). These changes led to up to 11.4 and 51.4% increases in the high-risk of conversion areas of pastures and forests, respectively. If conversion occurs in the identified high-risk areas, at least 4.8 Pg of CO2 could be released into the atmosphere, a value that represents 10 times the total CO2 emissions of Brazil in 2014. Our results highlight the importance of targeting conservation policies and enforcement actions, including the Soy Moratorium, to mitigate future forest cover loss associated with infrastructure improvements in the region.