Copy reference, caption or embed code

- Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

Dose response curve of MPS in elderly and young muscle with protein ingestion at rest. MPS in the young is stimulated above basal with ~2.5 g of crystalline EAA (found in ~5 g of intact protein) before reaching a plateau at ~10 g of crystalline EAA (found in ~20 g of intact protein). In the elderly, MPS is increased above rest after ingestion of 20 g of whey protein and, like younger adults, the response plateaus thereafter. Star indicates MPS in both young and elderly after 6.7 g of EAA (typically found in 15 g of whey protein) enriched with leucine (41% or ~2.8 g) [36]. Finely dashed lines indicate the hypothesized leucine 'threshold' which must be surpassed in order to stimulate a robust increase in rates of MPS. The threshold may be considerably lower in the young (<1 g leucine in 2.5 g of crystalline EAA's) compared with the elderly (~1.5-2 g of leucine contained in 15-20 g of whey protein).
Dose response curve of MPS in elderly and young muscle with protein ingestion at rest. MPS in the young is stimulated above basal with ~2.5 g of crystalline EAA (found in ~5 g of intact protein) before reaching a plateau at ~10 g of crystalline EAA (found in ~20 g of intact protein). In the elderly, MPS is increased above rest after ingestion of 20 g of whey protein and, like younger adults, the response plateaus thereafter. Star indicates MPS in both young and elderly after 6.7 g of EAA (typically found in 15 g of whey protein) enriched with leucine (41% or ~2.8 g) [36]. Finely dashed lines indicate the hypothesized leucine 'threshold' which must be surpassed in order to stimulate a robust increase in rates of MPS. The threshold may be considerably lower in the young (<1 g leucine in 2.5 g of crystalline EAA's) compared with the elderly (~1.5-2 g of leucine contained in 15-20 g of whey protein).
Go to figure page
Reference
Caption
Embed code