Fig 1 - uploaded by María Suárez-Muñoz
Content may be subject to copyright.
Diagram showing the simplified version of the cycle implemented in INSTAR (inner circle), as well as the biological cycle of the processionary moth (outer circle). The modelled entities are shown in blue, while the real entities are shown brown. The biological cycle of the species is simulated in INSTAR by three types of submodels: development (colony, pupae and host development), mortality (colony and pupae mortality) and movement (procession, mating and oviposition) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
Source publication
Pine plantations, very common in the Mediterranean basin, are recurrently affected by forest pests due to intrinsic characteristics (high density, low spatial heterogeneity) and external factors (consistent trend towards a warmer and drier climate). INSTAR is an Agent-Based Model aiming to simulate the population dynamics of the Thaumetopoea pityoc...
Contexts in source publication
Context 1
... biological cycle of T. pityocampa is shown in Fig. 1. After mating, female moths lay between 150-350 eggs around pine needles or, more rarely, twigs. Eggs are exposed to predation and parasitism mainly caused by Ooencyrtus pitocampae and Baryscapus servadeii. Parasites are temperature-limited, and therefore the parasitism rate shows an altitude gradient: the higher the altitude, the ...
Context 2
... larvae complete their development, usually at the end of winter or beginning of spring, they constitute the characteristic processions and search for a place to bury (Fig. 1). Once the leading larva chooses a suitable spot, the whole group buries and pupal development starts. Pupation success rate depends on shading and parasitism and therefore optimal burial spots are characterised by high radiation and reduced vegetation cover (Robredo, 1963;Dulaurent et al., 2011Dulaurent et al., , 2012Torres-Muros et ...
Context 3
... latent pupal population can be much higher (Aimi et al., 2006). The conditions inducing extended diapause are still uncertain (but see Salman et al., 2019). When pupation process ends, moths emerge and live between 1 and 2 days, during which time they mate and lay their eggs on a nearby pine ( Zhang and Paiva, 1998) ("Mating" and "Oviposition" in Fig. ...
Context 4
... air temperature each day. −50 -+50 (ºC) Fig. 1 depicts a schematic overview of the submodels that take place in each time step as well as the entities which perform them. After initialisation (see section 3.3.1), every time step consists ...
Context 5
... uses a series of submodels to simulate the development of the pest, as well as its interactions with the hosts and the cells (Fig. 1). These submodels make use of best available current knowledge about T. pityocampa, but have been built in such a way that will allow an easy integration of new information as knowledge on this pest increases. As an example, if new information on pupae distribution is found, the "procession" submodel could be adjusted to follow such ...
Context 6
... Development submodels. Development submodels are used to simulate how an organism increases its biomass over time or how it changes to the next stage of its life-cycle. These submodels are depicted in Fig. 1. In INSTAR, hosts, colonies and clusters of pupae have an associated development submodel, while a moths' development submodel is not required based on the assumption that all moths live one ...
Context 7
... three years along the tested values for parameters T larvae_devel_high and T larvae_devel_intern (T larvae_devel_low fixed to -8 °C). A local minimum can also be observed for T larvae_devel_high equal to 22 °C T larvae_devel_intern equal to 23 °C. This local minimum, however, is not so clearly observed for data regarding each year separately (see Fig. 11A-C in Appendix ...
Context 8
... fluctuating differences. If the mean across years is considered, a consistent increase can be noticed for values −7 °C to −5 °C. As mentioned above, the minimum difference is found at −8 °C. The influence of parameter T larvae_devel_low when the local minima of T larvae_devel_high equals 22 °C T larvae_devel_intern equals 23 °C can be observed in Fig. 12 in the Appendix F, resulting in higher differences for most values and years. It should be noted that parameter T larvae_devel_low is evaluated only when maximum daily temperature is above T larvae_devel_high and/or integrated daily temperature is below T larvae_devel_intern (see section 3.3.3.2), which could explain the seemly erratic ...
Context 9
... to the inherent characteristics of ABMs, there is a high degree of uncertainty in the model and a high number of parameters, which will require calibration and parameterisation (Kelly (Letcher) et al., 2013). Thus, further work should focus on determining the parameters which have the strongest impact on model outputs (i.e. ...
Citations
... To minimise the issue of non-standardised/non-replicable model descriptions, the Overview, Design concepts and Detail (ODD) Protocol was introduced by Grimm et al., [71,72]. The ODD protocol is an increasingly common format for documenting and presenting ABMs, particularly human-environment systems models (e.g., [97,98]). ...
Climate change and relative sea-level rise (RSLR) will increasingly expose coastal cities to coastal flooding, erosion, pluvial and fluvial flooding, episodic storm-tide flooding and eventually, permanent inundation. Tools are needed to support adaptive management approaches that allow society to adapt incrementally by making decisions now without creating path dependency and compromising decision-making options in the future. We developed an agent-based model that integrates climate-related physical hazard drivers and socio-economic drivers. We used it to explore how adaptive actions might be sequentially triggered within a low-elevation coastal city in New Zealand, in response to various climate change and socio-economic scenarios. We found that different adaptive actions are triggered at about the same RSLR level regardless of shared socio-economic pathway/representative concentration pathway scenario. The timing of actions within each pathway is dictated mainly by the rate of RSLR and the timing and severity of storm events. For the representative study site, the model suggests that the limits for soft and hard protection will occur around 30 cm RSLR, fully-pumped water systems are viable to around 35 cm RSLR and infrastructure upgrades and policy mechanisms are feasible until between 40 cm and 75 cm RSLR. After 75 cm RSLR, active retreat is the only remaining adaptation pathway.
... Les parasitoïdes sont limités par la température et le taux de parasitisme semble suivre un gradient altitudinal avec une diminution du taux en hautes altitudes (Suárez-Muñoz et al., 2019). Le succès d'expansion vers le nord et les hautes altitudes de la processionnaire du pin peut être expliqué par l'échappement de la microévolution qu'elle peut avoir avec ses ennemis naturels. ...
Face au changement climatique, des modifications de la distribution et de la phénologie des espèces ont été observées. La processionnaire du pin (PP) (Thaumetopoea pityocampa) est considérée comme un modèle d’étude pour comprendre l’effet du réchauffement climatique sur la distribution des espèces car sa distribution s’étend en réponse à l’augmentation des températures hivernales. La PP est un ravageur forestier à impact économique et sanitaire. L’apparition de processions précoces atypiques dans certaines régions a été observée ces dernières années. Cependant, les conséquences du changement climatique sur sa phénologie restent encore peu connues. Une meilleure compréhension des variations spatiales et temporelles de la phénologie est cruciale, non seulement pour mieux comprendre l’effet du changement climatique sur la PP, mais aussi pour optimiser les méthodes de lutte et prévenir des risques d’urtication étant donné qu’il est nécessaire pour cela de savoir quand les différents stades larvaires sont présents. Afin de tester l’hypothèse d’une variation de la phénologie dans le temps (du fait du changement climatique) et dans l’espace (du fait des différents types de climats rencontrés en France), des suivis de la période de vol, du développement larvaire et de la période de procession ont été réalisés de 2018 à 2021 dans plusieurs régions biogéographiques en France. Ces données ont été comparées aux données historiques datant des années 1970-1980. Un potentiel étalement du vol et peu de variation dans la période de procession ont été mis en évidence. La phénologie de l’espèce varie dans l’espace en fonction des températures de l’été, de la date des premiers gels et de la rigueur de l’hiver. Afin d’identifier les mécanismes responsables de ces variabilités phénologiques, un modèle mathématique a été développé pour prédire les stades phénologiques de l’œuf jusqu’au dernier stade larvaire. Celui-ci a été calibré sur les courbes de performances thermiques des différents stades de la PP, obtenues en conditions contrôlées, à partir de la population d’Orléans. Les valeurs des paramètres de ces courbes étaient effectivement différentes selon les stades. Le modèle a ensuite été validé de manière indépendante grâce aux données de suivis réalisés à Orléans durant l’étude. L’augmentation de la température globale et/ou des vagues de chaleur en automne expliqueraient l’occurrence de processions précoces. Face au changement climatique, ces processions devraient donc être plus fréquentes. Le modèle a ensuite été testé sur cinq autres populations suivies durant cette étude, situées dans des régions climatiques différentes. Celui-ci rend bien compte de la variabilité spatiale de la phénologie observée. Le modèle phénologique prend comme variable la température de l’air. Or, les larves se trouvent dans un nid de soie. Dans le but de déterminer et simuler le microclimat associé au nid, un modèle biophysique a été développé. Le nid confère un microclimat chaud pouvant impacter le développement et potentiellement la survie des larves. En mesurant la tolérance thermique des différents stades larvaires,différents seuils thermiques ont été identifiés. Les résultats obtenus dans cette thèse montrent qu’il est important de considérer les contraintes de développement et de survie de chaque stade afin de prédire correctement l’effet des conditions climatiques sur la phénologie et la survie de la PP. Ils montrent aussi clairement que les changements de phénologie de la PP sont en lien avec le changement climatique. Ainsi la PP pourrait être un modèle d’étude pour comprendre l’effet du changement climatique sur la distribution et la phénologie des espèces, deux composantes étroitement liées.
Changes in the distribution and abundance of animal populations and communities signal a clear response to environmental alterations. A number of changes in climateClimate and land use are taking place in the Sierra NevadaSierra Nevada, such as higher temperaturesTemperature and greater forest cover. In this chapter, we analyse the responses of animal populations and communities to these changes, for which long-term data are available in Sierra NevadaSierra Nevada. In the first part of the chapter, several examples illustrate spatio-temporal changes in the distribution and abundance of bird communities (passerines) in 3 types of habitats for which information has been available since the 1980s: (1) Oak groves, (2) high-mountain juniper, (3) high-mountain summits. The results indicate a continuous turnover within the bird communityCommunity, in an ecological setting that has changed little, especially in the high-mountain scrubland and summit areas. Moreover, the results also show a sharp decrease in bird density during the 40-year study period, chiefly affecting the dominant species of the 1980s in the Pyrenean oak woodland and in the high-mountain juniper scrubland. The outcome of these processes is a communityCommunity in continuous flux, both in composition and abundance. The second part uses the pine processionary moth (Thaumetopoea pityocampa) as a biological sensor of the changes occurring in the climateClimate and land use, considering not only spatial (elevational as well as regional) but also temporal. The pine processionary moth (T. pityocampa) exemplifies the way in which some defoliators of Spanish forests benefit from global warming and land-use change. As its larvae develop during the winter, higher temperaturesTemperature may benefit this insect, accelerating its development. The analyses confirm such benefits due to rising temperaturesTemperature in the medium–high elevations of Sierra NevadaSierra Nevada, since the climateClimate there has been the most limiting factor for this pest until now, as natural predators are scarce at these altitudes and it is also the area where most of the pine plantations are found.
Forest ecosystems face an increasing pressure of insect pest outbreaks due to changes in land-use, new climatic conditions, and the arrival of new invasive alien species. Also, insect outbreaks may interact with other shifting disturbances such as fire and drought, that eventually may boost the impacts of pests on forest ecosystems. In the case of alien species, the lack of long-term data and their rapid spread challenges their study and require appropriate new management strategies to cope with them. Here we studied the case of boxwoods (Buxus sempervirens) in Southern Pyrenees under the pressure of the invasive insect box tree moth (Cydalima perspectalis), fire, and drought events. We projected the future of boxwoods through the development of a spatially explicit simulation model and its implementation under different climatic and ecological scenarios. The results showed an initial boxwood decline due to C. perspectalis fast spread but a later stabilization of the population resulting from a fluctuating dynamic. Climate change is expected to reduce overall insect habitat suitability and future negative impacts on boxwoods. Furthermore, boxwood drought-induced mortality and burning will increase under new climatic conditions. Interaction between drought and insect pest conditioning regeneration after defoliation were negligible in our analyses. Boxwood decline was anticipated to be more notorious in locations under 800 m a.s.l. and in habitats where the species dominates the forest understory, while boxwood in open shrub forest types typical of higher elevations will be less endangered. Our results provide valuable information for boxwood and C. perspectalis management in a context of joint disturbance impacts and contribute to a better identification of the role of forest disturbances and their interactions.
Despite of the widespread implementation of agent-based models in ecological modeling and another several areas, modelers have been concerned by the time consuming of these type of models.