Comparison of as received (wet) cassava waste analysis from the literature

Comparison of as received (wet) cassava waste analysis from the literature

Source publication
Article
Full-text available
In Thailand, cassava waste is one of the main biomass residues and has the potential to be used as a biomass fuel. However, currently most cassava waste in Thailand is left in agricultural fields or burnt on site and is not utilised for any energy-related purposes. This research investigates the environmental impacts associated with three cassava w...

Context in source publication

Context 1
... waste properties have been investigated in previous studies. Some of their results regarding the fuel properties of cassava waste (including ultimate and proximate analyses) are provided in Table 1. Also, Yin, Rosendahl [6] suggested that biomass characteristics, including those of cassava waste, typically vary by location, climate and species. ...

Citations

... Relevant to this work, cassava (Manhiot esculenta) is an important source of farm income in Sub-Saharan Africa (SSA) [16]. Around 169 Mt of cassava are produced in Africa annually [17] resulting in 40 Mt of cassava waste [18], and each ton of cassava pulp abandoned in landfills releases between 195 and 361 kg of CO 2 equivalent to the atmosphere [19]. Cassava waste includes peels, bagasse and wastewater; which have the potential for valorisation into products (i.e. ...
Article
Full-text available
Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon–neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Graphical Abstract
Article
Full-text available
Globally, 70 % of people are fed through peasant food systems that are responsible for growing 50 % of the world’s food calories on 30 % of the land. In the global south, particularly in Sub-Saharan Africa, small-scale farming serves as a crucial lifeline for the food and income needs of local populations. Yet, it remains under- funded and under-researched in the context of sustainable development. Even if the traditional Life Cycle Sus- tainability Assessment offers a holistic approach to evaluating the impacts of staple food processing across environmental, economic, and social dimensions, its inability to track dynamic materiality limits its application in evaluating future impacts. Therefore, this study aimed to provide a comprehensive Life Cycle Sustainability Assessment framework for staple food processing, using cassava to produce gari, a staple food for more than 300 million West Africans, as a case study. This framework integrates Material and Energy Flow Analysis techniques to trace resource use and emissions. The research incorporated Environmental, Social and Governance pillars; double materiality, evaluating both the direct and indirect impacts of processing activities, alongside dynamic materiality to capture evolving environmental, financial, and social factors through scenarios. Python compu- tational modeling was used to perform these complex analyses, ensuring accuracy and adaptability. The findings highlight significant energy inefficiencies (6.67 kWh kg-1) coupled with a high Global Warming Potential (GWP) of 9.02 kgCO2eq kg-1 and production costs of $0.56 kg-1. The most significant opportunities for improvement were identified in optimizing energy consumption and transforming waste into biogas. The dynamic model revealed that integrating renewable energy sources could substantially reduce environmental impacts and in- crease the Net Profit Margin from 34.43 to 52.52 %, as proposed in the energy transition from woodfuel and gasoline to a Hybrid Solar and Biogas energy system. This study contributes to the growing body of literature on Life Cycle Sustainability Assessment by applying a comprehensive framework to staple food processing. The findings offer valuable insights into the environmental, social, and economic trade-offs in food processing sys- tems, providing practical recommendations for improving sustainability throughout the food supply chain. Extended studies using these methods on other staples are highly recommended
Article
The use of plastic materials is forecasted to double by 2030 in Africa. The increase in plastic demand presents an opportunity to develop biopolymers such as polyhydroxyalkanoates (PHA) instead of petroleum-based plastics. However, the high cost of PHA production is closely linked to feedstock price, which will hinder their deployment. On the other hand, the Sub-Saharan Africa (SSA) economy is heavily reliant on agriculture, with cassava being one of the most important crops. Cassava industries in SSA produce 146 Mtpa cassava, generating an estimated 40 Mtpa waste, of which 55% goes to landfill or is incinerated. The use of cassava waste as a carbon source for PHA production, therefore, represents an opportunity to decrease production costs of bioplastics while contributing to waste management solutions. This review critically analyses the potential for developing cassava waste biorefineries for the production of PHA in SSA, a region where the bioplastics industry is in a nascent stage. We conclude that cassava waste is an adequate resource for the production of bioplastics in the SSA region that can also contribute toward the reduction of GHG emissions whilst decreasing the dependence on fossil fuels. We identify cost reduction potential with PHA-overproducing strains or strains capable of utilizing substrates more efficiently and show the economic attractiveness of using waste biomass resources in a circular economy framing. Finally, we make recommendations on the next steps needed to pave the way for sustainable economic development, job creation and industrial activity in the SSA region using circular economy principles.