Figure - available from: Materials
This content is subject to copyright.
Chemical element distribution images for AlNbTiVZr HEAs: (a) Al1.5-Zr of Sample 1; (b) Al1.5-Zr0.5 of Sample 2; (c) Al-Zr of Sample 3; (d) Al0.5-Zr of Sample 4; (e) Al0.5-Zr0.5 of Sample 5.
Source publication
To investigate the comprehensive effects of the Al and Zr element contents on the microstructure evolution of the AlNbTiVZr series light-weight refractory high entropy alloys (HEAs), five samples were studied. Samples with different compositions were designated Al1.5NbTiVZr, Al1.5NbTiVZr0.5, AlNbTiVZr, AlNbTiVZr0.5, and Al0.5NbTiVZr0.5. The results...
Similar publications
This study aims to investigate the impact of multi-channel spiral twist extrusion (MCSTE) on the corrosion and degradation properties of biodegradable AZ31 (Mg-3Al-1Zn, wt.%) magnesium alloy. Square AZ31 billets were processed using route C-MCSTE (with a 180° rotation between passes) at 250°C and with a ram speed of 10 mm/min for up to 8 passes. Th...
Citations
This study investigated the microstructure and mechanical properties of AlNbTiVZr series high-entropy alloys (HEAs) through both experimental studies and density functional theory calculations. Significant improvements in the microstructures and mechanical properties were achieved for the AlNbTiVZr series HEAs by meticulously adjusting the alloy composition and employing homogenization heat treatment. Notably, the specimen designated as Al0.5NbTiVZr0.5 demonstrated excellent mechanical properties including a compressive yield strength of 1162 MPa and a compressive strength of 1783 MPa. After homogenization heat treatment at 1000 °C for 24 h, the Al0.5NbTiVZr0.5 alloy exhibits brittle-to-ductile transition. Further atomic-scale theoretical simulations reveal that the decrease of Al content intrinsically enhances the ductility of the alloys, thereby indicating that the mechanical properties of the AlNbTiVZr series HEAs were significantly influenced by the chemical composition. Additionally, specific atomic pair formations were observed to adversely affect the microstructure of the AlNbTiVZr series HEAs, particularly in terms of ductility. These findings provide valuable insights for the design and optimization of light weight HEAs, emphasizing the synergistic adjustment of alloy composition and heat treatment processes to achieve a balance between the strength and ductility.