Figure - available from: IET Power Electronics
This content is subject to copyright. Terms and conditions apply.
Capacitor voltage self‐balancing control effect. (a) 5‐level HB‐MMC, (b) 11‐level HB‐MMC. HB‐MMC, half‐bridge modular multilevel converters.
Source publication
The problem of submodule switching frequency reduction in half‐bridge modular multilevel converters (HB‐MMCs) with capacitor voltage self‐balancing control is considered and explored in this paper. A selection principle of submodule switching state vectors is proposed based on the voltage self‐balancing switching state matrix, aiming to lower submo...
Similar publications
A generator of high-power nanosecond pulses consisting of four stages that are switched on in a relay-race mode is described. Each stage contains a storage capacitor with an operating voltage of 8 kV and an assembly of series-connected shock-ionized dynistors. The possibility of switching current pulses with an amplitude of 800 А to a load of 30 Ω...
Citations
... In [47], the letter tackles the issue of DC ofset (DCO) in phase-locked loops (PLLs), crucial in renewable energyinterfaced grid-connected converters. A novel frequencyfxed DCO rejection method is introduced, enhancing PLL output accuracy without compromising dynamic performance. ...
Microgrids (MGs) play a crucial role in modern power distribution systems, particularly in ensuring reliable and efficient energy supply, integrating renewable energy sources, and enhancing grid resilience. Voltage and frequency stability are paramount for MG operation, necessitating advanced control frameworks to regulate key parameters effectively. This research introduces a multilayer interactive control framework tailored for MGs utilizing distributed energy resources (DERs). The framework comprises primary control layers, integrating internal voltage and current controller loops, and secondary layers employing distributed finite-time control (DFTC) strategies. Through simulation studies and comparative analyses with traditional proportional-integral (PI) controllers, the effectiveness of DFTC controllers in reducing initial oscillations and improving stability is demonstrated. Major findings include the superior performance of DFTC controllers in stabilizing voltage and frequency parameters, optimizing power output, and enhancing overall operational efficiency. Additionally, insights into the operational dynamics of MG systems highlight the significance of advanced control strategies in mitigating fluctuations and ensuring system stability. Furthermore, the proposed method demonstrates significant efficacy improvements over conventional approaches. Voltage stability is enhanced with oscillation amplitudes less than 0.01 pu, active power control achieves a stable level of 0.93 pu, and frequency fluctuations are reduced to 0.004 Hz and effectively recovered to 0.002 Hz. These improvements suggest that the proposed method enhances system stability and control precision by approximately 95% compared to conventional methods, as it achieves much tighter control over voltage, active power levels, and frequency fluctuations.