Fig 7 - uploaded by Farshid S Ahrestani
Content may be subject to copyright.
-Bos gaurus herd with adult females and calves from Bandipur Tiger Reserve, southern India. Used with permission of the photographer M. N. Naveen.

-Bos gaurus herd with adult females and calves from Bandipur Tiger Reserve, southern India. Used with permission of the photographer M. N. Naveen.

Source publication
Article
Full-text available
Bos frontalis Lambert, 1804 and Bos gaurus Hamilton-Smith, 1827 are the domestic and wild forms, respectively, of the bovid commonly called the gaur. It is the world's largest cattle species. Bos gaurus is endemic to south and southeastern Asia, and today, the majority of its population occurs in India. It is sexually dimorphic, with adult males ha...

Context in source publication

Context 1
... behavior.-Bos gaurus is predominantly a herd- ing animal (Fig. 7). Females of all ages and males below the age of 3 years are nearly always found in herds, and adult males are found both within herds and alone (Inverarity 1889;Hubback 1937;Morris 1937;Schaller 1967). Herds of only adult males are uncommon, though in 2007, 16 males (> 4 years) were once observed together in Mudumalai, India (F. S. ...

Citations

... Further challenges to the assessment of the association between domestication and neuropeptide gene changes stem from the domestication classification of some species and the genome assembly quality of other species. With respect to domestication assignments, for example, the gayl (Bos frontalis) is often considered the domestic form of the wild gaur (Bos gaurus) [67], however the degree of domestication is highly variable among the former group. With regards to sequence quality, the virtually identical nucleotide or protein sequences predicted from all camelid genomes available in this study invalidates the conclusion of adaptive introgression of endothelin 3 (EDN3) in South American camelids [6]. ...
Article
Full-text available
The impact of evolution and domestication processes on the sequences of neuropeptide prohormone genes that participate in cell–cell signaling influences multiple biological process that involve neuropeptide signaling. This information is important to understand the physiological differences between Cetartiodactyla domesticated species such as cow, pig, and llama and wild species such as hippopotamus, giraffes, and whales. Systematic analysis of changes associated with evolutionary and domestication forces in neuropeptide prohormone protein sequences that are processed into neuropeptides was undertaken. The genomes from 118 Cetartiodactyla genomes representing 22 families were mined for 98 neuropeptide prohormone genes. Compared to other Cetartiodactyla suborders, Ruminantia preserved PYY2 and lost RLN1. Changes in GNRH2, IAPP, INSL6, POMC, PRLH, and TAC4 protein sequences could result in the loss of some bioactive neuropeptides in some families. An evolutionary model suggested that most neuropeptide prohormone genes disfavor sequence changes that incorporate large and hydrophobic amino acids. A compelling finding was that differences between domestic and wild species are associated with the molecular system underlying ‘fight or flight’ responses. Overall, the results demonstrate the importance of simultaneously comparing the neuropeptide prohormone gene complement from close and distant-related species. These findings broaden the foundation for empirical studies about the function of the neuropeptidome associated with health, behavior, and food production.
... The mighty gaur (Bos gaurus), also known as the Indian bison, is the largest species of wild cattle and is at risk of becoming endangered in the near future. The gaur can attain up to 198 cm shoulder height [1], weigh up to 900 kg, has white stockings on the legs, and possesses spiral-shaped horns [2] (Fig. 1a) to protect itself against predators such as tigers. It is native to South and Southeast Asia and listed as vulnerable on the International Union for Conservation of Nature (IUCN) Red List [3]. ...
... Based on morphological characteristics the species is classified into three subspecies, B. gaurus gaurus, B. gaurus readei and B. gaurus hubbacki [2]. B. gaurus gaurus is mainly found in India, Nepal and Bangladesh; B. gaurus readei inhabits China and Myanmar; B. gaurus hubbacki is mainly found in Malaysia and occurs in two distinct forms, one with well-developed dewlap and one without [6]. ...
Article
Full-text available
Background The gaur ( Bos gaurus ) is the largest extant wild bovine species, native to South and Southeast Asia, with unique traits, and is listed as vulnerable by the International Union for Conservation of Nature (IUCN). Results We report the first gaur reference genome and identify three biological pathways including lysozyme activity, proton transmembrane transporter activity, and oxygen transport with significant changes in gene copy number in gaur compared to other mammals. These may reflect adaptation to challenges related to climate and nutrition. Comparative analyses with domesticated indicine ( Bos indicus ) and taurine ( Bos taurus ) cattle revealed genomic signatures of artificial selection, including the expansion of sperm odorant receptor genes in domesticated cattle, which may have important implications for understanding selection for male fertility. Conclusions Apart from aiding dissection of economically important traits, the gaur genome will also provide the foundation to conserve the species.
... Gaur utilize agricultural fringes mostly at night to feed and leave to adjacent secondary forest habitat early morning to avoid conflict (Chaiyarat et al., 2021). Gaur are generally shy and avoid contact as much as possible (Ahrestani, 2018). ...
Article
Full-text available
Aim: To predict the distribution of suitable habitats for Malayan gaur (Bos gaurus) at a highly fragmented forest area in Peninsular Malaysia and to identify the potential connectivity between suitable habitat patches. Methodology: Maximum entropy (MaxEnt) approach was used to predict the distribution of suitable habitats of the Malayan gaur. Gaur presence-only data and six environmental variables were collated for the habitat suitability modeling, and area under curve (AUC) value was used to estimate the performance of the model. The resulting model was then used to derive a potential connectivity map through least-cost analysis using Corridor Designer toolbox in ArcGIS 10.4. Results: The AUC value of the habitat suitability model was 0.84. Distance from urban areas indicated the highest relative contribution to the model (26.9%), followed by distance from water body (24.2%) land use (18.0%) elevation (14.3%), slope (14.0%) and lithology (2.6%). Predicted suitable habitats for gaur were found mostly in lowland forest areas, especially in the vicinity of rivers within forest reserves. A total of five wildland blocks were derived from the habitat suitability model, and several potential corridor swaths were identified connecting the wildland blocks. Interpretation: The absence of gaur occurrence in suitable habitats suggest that fragmented habitats greatly affected gaur distribution and population. Road network and agricultural lands are the major barriers of gaur movement as they are very sensitive towards disturbances and conflict. Thus, this research proposes potential connectivity at a regional scale for Malayan gaur for use in future planning in conservation, management and development.
... Ungulate species have been found to have different food and feeding habits 43 . Gaur, have been described as grazers 42,44,45 , browsers 46 and generalists 47 depending on habitat types. ...
Article
The presence of gaur (Bos gaurus) at the border of Khao Yai National Park (KYNP) in Thailand has resulted in a dramatic increase in the number of individuals' crop feeding. This study examines the feeding adaptations of gaur at the edge of the protected area and assesses whether gaur response to increased nutrient availability in crop plants compared to natural forage. During the day, gaur mostly utilized forest areas in KYNP and entered the agricultural areas at night. Gaur ate 43 natural forage species. Natural forage species contain high levels of crude protein and lipid, but they are found in small quantities and scattered areas when compared to crop plants, especially Zea mays L., that are available in large quantity and are heavily foraged on by gaur. However, greater understanding of the electivity index and nutrition of forage species along the edge of the protected area can be used to reduce the gaur-human conflict by keeping gaur in KYNP. Reducing the large monoculture areas that is the food sources of gaur along the edge may reduce or prevent gaur leaving the park and can be applied to advance conservation actions. Human-wildlife coexistence at the edge of protected areas can create problems that are referred to as human-wildlife conflicts 1. In general, specialist species are more affected by habitat modification than are generalist species. Moreover, some species are able to change to forage on food species that are more readily available when their preferred forage species are scarce 2 , thereby using crops as an alternative food source. Some crops are attractive to wild animals and provide both energy and nutrition 3. However, this subject is poorly studied, especially in the large bovids of tropical environments. Gaur (Bos gaurus), family Bovidae (Fig. 1), is globally vulnerable 4 , and protected under the Thai Reserved and Protected Animals Act, B.C.2562 5. Gaur are distributed in scattered areas of Bhutan,
... Ungulate species have been found to have different food and feeding habits 43 . Gaur, have been described as grazers 42,44,45 , browsers 46 and generalists 47 depending on habitat types. ...
Article
Full-text available
The presence of gaur ( Bos gaurus ) at the border of Khao Yai National Park (KYNP) in Thailand has resulted in a dramatic increase in the number of individuals’ crop feeding. This study examines the feeding adaptations of gaur at the edge of the protected area and assesses whether gaur response to increased nutrient availability in crop plants compared to natural forage. During the day, gaur mostly utilized forest areas in KYNP and entered the agricultural areas at night. Gaur ate 43 natural forage species. Natural forage species contain high levels of crude protein and lipid, but they are found in small quantities and scattered areas when compared to crop plants, especially Zea mays L., that are available in large quantity and are heavily foraged on by gaur. However, greater understanding of the electivity index and nutrition of forage species along the edge of the protected area can be used to reduce the gaur-human conflict by keeping gaur in KYNP. Reducing the large monoculture areas that is the food sources of gaur along the edge may reduce or prevent gaur leaving the park and can be applied to advance conservation actions.
Article
Full-text available
The gaur ( Bos gaurus ) is found throughout mainland South and Southeast Asia but is listed as an endangered species in Thailand with a decreasing population size and a reduction in suitable habitat. While gaur have shown a population recovery from 35 to 300 individuals within 30 years in the Khao Phaeng Ma (KPM) Non-Hunting Area, this has caused conflict with villagers along the border of the protected area. At the same time, the ecotourism potential of watching gaurs has boosted the local economy. In this study, 13 mitochondrial displacement-loop sequence samples taken from gaur with GPS collars were analyzed. Three haplotypes identified in the population were defined by only two parsimony informative sites (from 9 mutational steps of nucleotide difference). One haplotype was shared among eleven individuals located in different subpopulations/herds, suggesting very low genetic diversity with few maternal lineages in the founder population. Based on the current small number of sequences, neutrality and demographic expansion test results also showed that the population was likely to contract in the near future. These findings provide insight into the genetic diversity and demography of the wild gaur population in the KPM protected area that can inform long-term sustainable management action plans.
Article
Full-text available
Significance We undertook an ancient genomic DNA investigation of large animal remains dated ∼5,200 y B.P. from the Tibetan Plateau. We provide compelling evidence that the present-day low-latitude tropical inhabitants Bos gaurus and Dicerorhinus sumatrensis once roamed as far north as the margin of the northeastern Tibetan Plateau (NETP) during the late Neolithic, pushing the historical gaur distribution from ∼29°N to ∼34°N. Further multidisciplinary exploration indicates that a high summer temperature in the late Neolithic might have facilitated the northward expansion of these tropical animals to the NETP, which enriched the biodiversity of wildlife and contributed to the exploration of the Tibetan Plateau as one of the last habitats for hunting game in East Asia.
Article
Full-text available
The gaur is the largest extant cattle species and distributed across South and Southeast Asia. Around 85% of its current global population resides in India, however there has been a gradual decrease in the gaur population over the last two decades due to various anthropogenic activities. Mitochondrial genome is considered as an important tool for species identification and monitoring the populations of conservation concern and therefore it becomes an obligation to sequence the mitochondrial genome of Indian gaur. We report here for the first time 16,345 bp mitochondrial genome of four Indian gaur sequenced using two different approaches. Mitochondrial genome consisted of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a control region. Among the 37 genes, 28 were positioned on the H-strand and 9 were positioned on the L-strand. The overall base composition appeared to be 33.5% A, 27.2% T, 25.9% C and 13.4% G, which yielded a higher AT content. The phylogenetic analysis using complete mitochondrial genome sequences unambiguously suggested that gaur is the maternal ancestor of domestic mithun. Moreover, it also clearly distinguished the three sub species of B. gaurus i.e. B. gaurus gaurus, B. gaurus readei and B. gaurus hubbacki. Among the three sub species, B. gaurus gaurus was genetically closer to B. gaurus readei as compared to B. gaurus hubbacki. The findings of our study provide an insight into the genetic structure and evolutionary history of Indian gaur.
Article
Full-text available
The primary prey of tigers across much of South‐East Asia has been depleted, reducing the ability of already limited habitat to support tigers. To better understand the extent to which two of the largest prey species, gaur (Bos gaurus) and banteng (Bos javanicus), contribute to the tiger's diet, we estimated the average size of these species killed by tigers. This information is needed to more accurately calculate biomass of these species in the tiger's diet and to devise strategies to increase tiger carrying capacity where habitat is fragmented and limited in west‐central Thailand. We used temporally clumped locations of 24 satellite radio‐collared tigers to identify their kill sites and obtained mandibles from 82 gaur and 79 banteng. Kills were aged by teeth eruption sequence, sectioning the M1 molar and counting cementum annuli. Of all gaur killed, 45.2% were adults; of all banteng killed, 55.7% were adults. The average weight of banteng killed was 423.9 kg, which was similar to the 397.9 kg average weight for gaur. The mean weight of both prey species is 3.5–4.5 times greater than the predicted 1:1 preferred prey to predator ratio. In the absence of medium‐sized prey, killing these larger animals may be especially critical for female tigers provisioning nearly independent young when male offspring are already larger than the mother. This is the first study to present data on the average weights of gaur and banteng killed in South‐East Asia, and these results suggest that these are key prey species to target in tiger prey recovery efforts.