Figure 4 - uploaded by Martin Hessling
Content may be subject to copyright.
Bacterial reduction for L. rubrilucens during UV-C irradiation. Error bars depict the standard deviation of the average of three independent measurements. 

Bacterial reduction for L. rubrilucens during UV-C irradiation. Error bars depict the standard deviation of the average of three independent measurements. 

Source publication
Article
Full-text available
Background: Despite the great health significance of Legionella, there is only little information on their UV sensitivity. Besides Legionella pneumophila only L. longbeachae has been investigated so far. Methods: In this study L. rubrilucens has been spread on buffered charcoal yeast extract agar and irradiated with the 254 nm UV-C emission of a me...

Similar publications

Article
Full-text available
Legionella infections have steadily increased in the United States over the last 20 years, and most of these infections have been attributed to contaminated water. The gold standard for confirmation of Legionella presence in water is culturing with Buffered Charcoal Yeast Extract (BCYE) agar. Following many modifications, this method is still time-...

Citations

... Mercury-based UV lamps are commonly used in drinking water and wastewater treatment plants [18]. Disinfection efficacy using low-pressure and mediumpressure mercury UV lamps has previously been reported for several Legionella species (e.g., L. bozemanii, L. dumoffii, L. longbeacheae, L. micdadei, and L. pneumophila (Lp)) as well as Lp sg1, 2, 7, and 8 strains [22][23][24][25][26][27][28][29][30]. However, there are major disadvantages of mercurybased UV lamps compared to UV light-emitting diodes (LEDs). ...
Article
Full-text available
Legionella pneumophila (Lp) is an opportunistic pathogen that causes respiratory infections primarily through inhalation of contaminated aerosols. Lp can colonize premise plumbing systems due to favorable growth conditions (e.g., lower disinfectant residual, stagnation, warm temperatures). UV-C light-emitting diodes (UV-C LEDs) are an emerging water treatment technology and have been shown to effectively inactivate waterborne pathogens. In this study, the inactivation of four Lp strains (three clinical sg1, 4, and 6; and one sg1 drinking water (DW) isolate) was evaluated using a UV-C LED collimated beam at three wavelengths (255, 265, and 280 nm) and six fluence rates (0.5–34 mJ/cm2). Exposure to 255 nm resulted in higher log reductions at the lower fluences compared to exposures at 265 and 280 nm. Efficacy testing was also performed using a UV-C LED point-of-entry (POE) flow-through device. Based on the log inactivation curves, at 255 nm, the sg4 and sg6 clinical isolates were more susceptible to inactivation compared to the two sg1 isolates. However, at 265 and 280 nm, the sg1 and sg4 clinical isolates were more resistant to inactivation compared to the sg6 clinical and sg1 DW isolates. Differential log reductions were also observed using the POE device. Results indicate that although UV-C LED disinfection is effective, variations in Lp inactivation, wavelengths, and technology applications should be considered, especially when targeting specific isolates within premise plumbing systems.
... In regard to the relationship between OPPPs and free-living amoebae, Cervero-Aragó et al. [170] determined that higher fluence was required for a 4-log (99.99%) reduction in Legionella species when co-cultured with amoeba. UV disinfection has been successfully applied to control Legionella in building water systems [167,171]. ...
Article
Full-text available
This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.
... Specificity of the measurement tool to UV-C light is important because many UV-C sources (e.g., medium-pressure mercury or xenon arc lamps) emit wavelengths outside of the germicidal UV-C range [7]. Even near-monochromatic UV-C sources such as low-pressure mercury and amalgam lamps emit wavelengths >300 nm ( Fig 1E) [34]. We asked two questions: (1) how much of the PCI color change from low-pressure amalgam bulbs is due to non-germicidal wavelengths, and (2) how susceptible are PCIs to perturbation by spurious solar exposure during transport or storage. ...
Article
Full-text available
With COVID-19 N95 shortages, frontline medical personnel are forced to reuse this disposable–but sophisticated–multilayer respirator. Widely used to decontaminate nonporous surfaces, UV-C light has demonstrated germicidal efficacy on porous, non-planar N95 respirators when all surfaces receive ≥1.0 J/cm ² dose. Of utmost importance across disciplines, translation of empirical evidence to implementation relies upon UV-C measurements frequently confounded by radiometer complexities. To enable rigorous on-respirator measurements, we introduce a photochromic indicator dose quantification technique for: (1) UV-C treatment design and (2) in-process UV-C dose validation. While addressing outstanding indicator limitations of qualitative readout and insufficient dynamic range, our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%) required for UV-C dose measurements. In a measurement infeasible with radiometers, we observe a striking ~20× dose variation over N95s within one decontamination system. Furthermore, we adapt consumer electronics for accessible quantitative readout and use optical attenuators to extend indicator dynamic range >10× to quantify doses relevant for N95 decontamination. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical considerations for both photochromic indicators themselves and UV-C decontamination processes.
... (e) Robust UV-C measurements must meet key specifications, including dynamic range of quantification (before the indicator saturates), relative measurement uncertainty (determined from error propagation from the confidence intervals on the calibration curve fit), accuracy of the measurement compared to a calibrated standard sensor, and specificity of the PCI response to the germicidal wavelength range (in order to accurately report germicidal activity). Specificity curves adapted from Kowalski 7 , Schmid et al. 26 , and Blickenstorfer and Aufmuth 27 . SARS-CoV-2 diagrams adapted from an image by Maya Peters Kostman for the Innovative Genomics Institute. ...
Preprint
With COVID-19 N95 respirator shortages, frontline medical personnel are forced to reuse this disposable − but sophisticated − multilayer textile respirator. Widely used for decontamination of nonporous surfaces, UV-C light has germicidal efficacy on porous, non-planar N95 respirators when ≥1.0 J/cm^2 dose is applied across all surfaces. Here, we address outstanding limitations of photochromic indicators (qualitative readout and insufficient dynamic range) and introduce a photochromic UV-C dose quantification technique for: (1) design of UV-C treatments and (2) in-process UV-C dose validation. Our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%). Furthermore, we adapt consumer electronics for accessible quantitative readout and extend the dynamic range >10× using optical attenuators. In a measurement infeasible with radiometers, we observe striking 20× dose variation over 3D N95 facepieces. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical design considerations for both photochromic indicators and UV-C decontamination.
... 6 Its mechanism is based on the destruction of the DNA of undesired microorganisms. 7 In Schmid et al study, 8 bacterial solutions containing Legionella rubrilucens were spread on buffered charcoal yeast extract agar and exposed to 254 nm UV-C radiation from a mercury vapor lamp. Successful disinfection was verified by counting Legionella colonies after incubation and comparing the number of colonies on irradiated agar plates with those on unirradiated reference plates. ...
... The obtained result is presented in Figure 1. 8 On average, a UV-C dose of 1.1 mJ/ cm 2 reduces the bacterial count by 90%, which is consistent with the results of two previous studies on other species Abstract Legionella infections caused by contaminated water are a widespread problem worldwide. Discharge lamps like mercury vapor lamps are widely known for the disinfection properties of their radiation, but they suffer technical disadvantages, like high voltages and toxic content, and are, therefore, not suitable for some infection control applications. ...
Article
Full-text available
Legionella infections caused by contaminated water are a widespread problem worldwide. Discharge lamps like mercury vapor lamps are widely known for the disinfection properties of their radiation, but they suffer technical disadvantages, like high voltages and toxic content, and are, therefore, not suitable for some infection control applications. New high-intensity ultraviolet (UV) and violet LEDs offer new approaches for Legionella control, because these bacteria are significantly light sensitive compared to other pathogens. One of the most important infection pathways is the inhalation of Legionella-containing aerosols during showering. This problem could be reduced by a single strong UV LED within the shower head, which irradiates the passing water for some milliseconds. This practice can be especially beneficial in hospitals and care facilities. UV light offers only a limited penetration depth, however, even in pure water. To disinfect larger water volumes, e.g., in water dispensers, visible violet LEDs are more appropriate. Unfortunately, up to now, neither approach has been given much attention by potential users.
Thesis
Polyoxometalates (POMs) are metal-oxo clusters formed by early transition metals in their highest oxidation state. More particularly, they exhibit adjustable redox properties, i.e. they can be reduced successively and reversibly to one or several electrons, such that they find their applications as redox mediators or electron reservoirs for electrocatalysis, solar energy conversion, molecular batteries or information storage. Previous results of POMs deposition onto surface characterized by electrical transport measurements were encouraging to envision the integration of active layers of POMs into nanodevices for molecular electronics. The electrical properties of the resulting device will depend on the assembly quality. The mastering of POMs immobilization onto substrates and the control of the POM/substrate interface is still required. In this context, NH2/NH3+-terminated organic monolayers grafted on oxide-free silicon substrates were prepared by hydrosilylation and post-modifications. After the electrostatic deposition of photoreducible (nBu4N)3[PMo12O40] POMs, the photoreduction of the immobilized POMs was studied by means of several characterization tools (XPS, UV-Vis-NIR spectroscopy, KPFM). Preliminary electrical characterization of a POM-based pseudo MOSFET prototype device was carried out to study the influence of the POM redox state on the device conductance and to study the possible photoswitching property. Concurrently, the covalent grafting of POM hybrids onto functionalized, hydrogenated or oxidized Si surfaces was explored during the project, with the prospects of a more stable, controlled and tunable POM/substrate interaction.
Article
Full-text available
Ultraviolet Germicidal Irradiation (UVGI) has grown significantly as an optimistic alternative to chemical disinfection for surface and air disinfection in the healthcare sector. The application of UVGI in robotic technology has led to new opportunities in developing the disinfection robot which allows us to prevent pathogen transmission, reduce human participation and cross infection, then achieve efficient, quick and environmentally friendly sterilization. The aim of this paper is to review the outstanding achievements in UV-C disinfection robot sector. This review is based on the reports on 35 types of UV-C disinfection robots in both academic research and commercial sector. The current and future trends in the UV-C lamp technologies and the technical capacities of the robot are also discussed.
Article
Biofilms can harbor a wide range of microorganisms, including opportunistic respiratory pathogens, and their establishment on engineered surfaces poses a risk to public health and industry. The emergence of compact germicidal ultraviolet light-emitting diodes (UV LEDs) may enable their incorporation into confined spaces to inhibit bacterial surface colonization on inaccessible surfaces, such as those in premise plumbing. Such applications necessitate knowledge of the quantitative response of biofilm growth rates to UV exposure on continuously irradiated surfaces. Herein, we performed experiments at varying flow cell temperatures in order to control baseline biofilm growth rates in the absence of UV; then, biofilm growth was compared under the same conditions but with simultaneous UVC irradiation. The inhibiting effect of UV irradiation on biofilm growth kinetics was diminished by more favorable growth conditions (higher temperature). Increasing the temperature by 10°C resulted in an increase in biovolume by 193% under a UVC (254 nm) intensity of ∼60 µW/cm². We further fitted an existing intensity response model to the biofilm growth data and analyzed the effects of temperature on model parameters, which were consistent with a hypothesized shielding effect arising from the deposition of extracellular colloidal materials. The shielding effect was found to result in breakthrough behavior of irradiated biofilms after 48 h, wherein accumulation of shielding substances eventually enabled biofilm establishment at even relatively high irradiation intensities (102.3 µW/cm²). With respect to applications of UVC irradiation for biofilm prevention, these results imply that surfaces more prone to bacterial colonization require disproportionately higher-intensity UVC irradiation for prevention of biofilm establishment, and continuous surface irradiation may be inadequate as a sole intervention for biofilm prevention in many scenarios.
Article
Full-text available
Introduction During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. Method Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm2 after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10–300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. Results No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%–6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm2 (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. Conclusion This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles.